催化学报杂志

发表咨询:400-808-1731

订阅咨询:400-808-1751

催化学报杂志 CSCD期刊

Chinese Journal of Catalysis

  • 21-1195/O6 国内刊号
  • 0253-9837 国际刊号
  • 1.52 影响因子
  • 1-3个月下单 审稿周期
催化学报是中国化学会;中国科学院大连化学物理研究所主办的一本学术期刊,主要刊载该领域内的原创性研究论文、综述和评论等。杂志于1980年创刊,目前已被万方收录(中)、CA 化学文摘(美)等知名数据库收录,是中国科学院主管的国家重点学术期刊之一。催化学报在学术界享有很高的声誉和影响力,该期刊发表的文章具有较高的学术水平和实践价值,为读者提供更多的实践案例和行业信息,得到了广大读者的广泛关注和引用。
栏目设置:研究快讯、研究论文、综述

催化学报 2018年第04期杂志 文档列表

催化学报杂志编者语
Preface to Special Issue on Environmental and Energy Catalysis565-565

摘要:Environmental pollution and energy storage are two major challenges faced by human beings.The magnitude of them is ever‐increasing due to rapid pace of urbanization and industrialization.In view of this,to achieve green environment and provide clean energy for human beings are pivotal for sustainability.The catalysis technology plays dominant role in addressing these issues.The nano/microstructured catalyst with intriguing physical and chemical properties could offer numerous opportunities to realize environmental sustainability and clean energy production.In the past two decades,great advances have been made on the design,synthesis and mechanistic understanding of typical catalysts for environmental and energetic applications.These new catalysts in various fashions can be classified into three main types,thermal catalysis,photocatalysis and electro catalysis.In some cases,two types can be combined together,such as photoelectrocatalysis and photothermal catalysis,to achieve higher catalysis efficiency.The features of catalysts can be further tailored to allow for enhanced catalytic performance in pollutant degradation and energy conversion.Advanced in situ techniques have been applied to explore and reveal the catalytic mechanisms.

催化学报杂志综述
铜基非贵金属异相催化剂在环境修复中的应用566-582

摘要:近年来,全球经济和工业高速发展带来的环境问题,不仅严重影响着经济社会的可持续发展,更极大地危害着人类健康.石油化工、医药生产和交通运输等过程产生的气、液、固相污染物可直接或间接造成臭氧层空洞、光化学烟雾及水体污染等重大环境问题.气相污染物中,CO和可挥发性有机物(VOCs)不仅具有生物毒性,更是形成光化学烟雾等大气污染的主要前驱体.NOx和SO2会造成酸雨的形成,极大地破坏生态系统.工业废水中难分解的有机污染物可对环境造成持续性破坏.而不完全燃烧产生的碳烟颗粒物不仅影响气候和大气环境,同时可导致心血管疾病高发,危害人体健康.源头控制是环境污染治理的关键,而催化净化是当前污染物源头控制最有效的技术之一.因此,设计和开发稳定、高效的环境修复催化剂是科学家们面临的一个关键问题.传统贵金属(Pt,Rh,Pd)催化剂虽然催化活性高,但是存在价格昂贵且易中毒等不足.而过渡金属及其氧化物因具有高活性、价格低廉和高储量等特点有望成为贵金属的替代催化剂.铜是具有3d轨道的过渡金属,有活泼的物理化学性质,是工业中大量应用的有色金属.铜基氧化物因高氧化还原电势和低环境危害被广泛应用于热催化、电催化和光催化.基于文献报道,铜基催化剂主要分为三类:铜氧化物(CuOx),负载型铜氧化物(CuOx/support)和固溶体铜氧化物(CuOx-X).本篇综述首先探讨了铜氧化物的价态、晶体结构、形貌、暴露晶面以及载体与催化剂活性之间的内在联系,阐明铜基催化剂结构与性能的构效关系及高效催化剂的设计原则;继而全面总结了近年来不同类型的铜基材料在催化净化环境污染物中的应用,主要介绍了以下5类反应:CO的催化氧化,NOx的选择性催化还原(SCR),VOCs的完全燃烧,废水中有机污染物降解,以及碳烟颗粒物催化燃烧.我们深入阐述

通过调控晶体结构提高氧气还原反应电催化活性:MPt金属间相纳米晶583-589

摘要:燃料电池的正极主要发生氧还原反应(ORR),但是该反应的动力学速率较慢,需要催化剂来降低反应的过电势.目前商用的催化剂是碳载铂纳米粒子催化剂,但是铂高昂的价格严重阻碍了燃料电池的大规模商业化.近年来的理论和实验研究表明,过渡金属(M)与铂(Pt)形成的纳米晶合金(MPt)能够作为有效的ORR催化剂,同时由于引入价格低廉的过渡金属,催化剂成本有所降低.然而,即使合金化的催化剂具有良好的初始催化性能,但是在燃料电池的实际操作环境,即高电压、高温和酸性条件,长时间运行之后,过渡金属很容易被腐蚀流失,从而留下表面配位数较低的铂原子,而这些铂原子对ORR反应几乎没有催化作用,导致催化剂逐渐失活,燃料电池的输出功率逐渐降低.最近一些研究表明,铂基催化剂在一定条件下,例如加热,能够发生固态相变,形成结构有序的即金属间纳米晶(iNCs).与无序排列的合金相比,这种有序的MPt能够调控表面铂原子与含氧中间体的结合能,可以进一步提高ORR活性;同时,由于在金属间纳米晶中铂原子与过渡金属原子具有很强的相互作用,过渡金属在酸性溶液中也不容易被腐蚀,从而大大提高了催化剂的稳定性.本综述以FePt,CoPt和PbPt为例,总结了它们的相变规律和条件,同时关注它们的合成-结构-性能的构效关系,突出金属间结构在提高活性和稳定性方面的优势.最后,为了进一步提高MPt金属间纳米晶的活性,我们提出一些可能的方向和观点,包括:(1)在实现无序-相变的同时实现形貌调控来提高催化剂活性;(2)关注尺寸效应,尽可能减小MPt金属间纳米晶的尺寸,提高铂的利用率,从而提高催化剂活性;(3)关注材料的有序程度,尽可能提高材料的有序度,充分发挥金属间纳米晶对于氧还原反应的优势.

I-III-VI族半导体纳米晶:合成,性质及应用590-605

摘要:半导体纳米晶具有独特的量子限域效应以及新颖的尺寸和形貌依赖特性,已被证实是在低成本高性能光伏器件、光致及电致发光二极管、生物成像、光催化等领域非常具有潜力的新型材料.其中,II-VI族与I-III-VI族半导体纳米晶由于其优异的性能在过去的数十年中引起了广泛的关注.过去数十年对于II-VI族半导体纳米晶的研究已经十分成熟,然而几乎所有的传统II-VI族半导体纳米晶都含有对环境有害的元素,对人体和环境造成不可逆转的伤害,从而限制了II-VI族半导体纳米晶的进一步应用.与二元II-VI族纳米晶相比,大部分三元I-III-VI族纳米晶不含镉和铅等重金属元素,因而具有低毒性的特点,并且其带隙窄、吸光收系数大、斯托克斯位移大、自吸收小以及发光波长在近红外区,所以有望使其成为新一代荧光纳米晶材料.例如,CuInS2的带隙为1.53 eV,与太阳光谱匹配且其吸光系数较大,在10?5cm?1左右,从而使其成为制备太阳能电池的一种优秀材料.另一方面,I-III-VI族纳米晶在可见光和近红外范围内呈现与尺寸相关的发光,它们的荧光量子产率在包覆ZnS壳后可超过50%,因而在照明,显示和生物成像领域具广泛应用的潜力.水溶性的I-III-VI族量子点粒径尺寸可以小于10 nm,可以减小纳米颗粒通过肾清除的淘汰率,并且具有高荧光性能和耐光性的特点,因此成为进行生物成像工作的优秀材料.与此同时,I-III-VI族纳米晶在光催化领域也展现了巨大的发展前景.本综述主要关注I-III-VI族纳米晶的合成,性质及应用.首先,我们概述了不同的化学合成方法,并列举讨论了一些经典的工作,根据纳米晶的种类分类统计了主要合成方法、形貌及尺寸.第二部分,我们讨论了它们的光物理和电子特性,解释了纳米晶的“donor-acceptor pair”(DAP)结合机理,概述了I-III-VI族纳米晶的磁光现象.接下来,我们概述了I-III

催化学报杂志快讯
三维有序大孔二氧化钛表面超细钯纳米颗粒的构筑及其增强柴油炭烟催化燃烧性能606-612

摘要:柴油机排放颗粒物(主要成分是炭烟)是城市大气PM2.5中一次颗粒物的主要来源和二次颗粒物形成的重要组分,严重危害大气环境和人类健康.利用颗粒物捕集器与催化剂相结合的连续过滤再生技术是满足柴油车国VI炭烟颗粒物排放标准的最有效技术,目前该技术所面临的挑战是研发在排气温度的柴油炭烟颗粒物催化氧化催化剂.柴油炭烟催化燃烧反应的本质是典型的气(氧气)-固(炭烟颗粒)-固(催化剂)三相深度氧化反应,因此我们研究组提出了高活性柴油炭烟燃烧催化剂设计应该遵循优化固-固接触与强化活化分子氧能力二者相结合的研究思路.为满足此设计思路的要求,本课题组前期采用孔径大于200 nm的三维有序大孔(3DOM)结构氧化物作为载体,利用大孔效应来实现PM在催化剂内部的有效扩散,从而提高催化剂与PM的接触效率.采用具有强活化分子氧能力的负载型贵金属(Au,Pt)纳米颗粒或贵金属-氧化物复合纳米颗粒作为活性位来提高催化剂对分子氧的活化能力,进而设计了多个系列高活性催化剂,并形成了担载贵金属纳米颗粒的可控制备方法与装置.然而,Au和Pt昂贵的价格限制了其广泛应用.价格相对便宜的Pd具有与Pt相似的催化性能,是其良好替代品.但是,目前关于3DOM氧化物表面负载型Pd纳米颗粒结构和尺寸与柴油炭烟催化燃烧性能之间的相关研究仍然较少.基于此,本文采用气泡辅助膜还原法制备了3DOM二氧化钛(TiO2)担载超细Pd纳米颗粒催化剂.利用XRD,Raman,BET,SEM,TEM,ICP,XPS和H2-TPR等技术手段对催化剂进行表征,并以模拟柴油炭烟为研究对象,利用程序升温氧化反应(TPO)对催化剂的活性进行评价,深入探讨了催化剂的制备、结构及物化性质与炭烟催化燃烧反应性能之间的关系.XRD和Raman结果表明,TiO2载体由锐钛矿(主)和金红石(次)两种物相组成.SEM照片显示,所制催化剂为规

NiFe双氢纳米粒子有效提高BiVO4光阳极光电化学水分解性能613-618

摘要:近年来,太阳能驱动的光电化学水分解作为一种高效、环保、可持续的技术,已经引起了广泛的关注.为了更好地使用光电化学技术将太阳能转化为化学能,至关重要的是提高光电极材料的光吸收和光转化效率.BiVO4禁带宽度(Eg=2.4–2.5 eV)小,具有很好的可见光响应能力,因此BiVO4光电极材料引起了广泛关注.但是,当单独BiVO4作为光电阳极材料时,电子-空穴对分离弱、载流子传输慢,从而使BiVO4不能很好地在光电化学水分解中发挥作用.为了缓解或解决此类限制性因素,本课题组通过水热法合成了NiFe双氢纳米粒子,并将其负载于BiVO4电极表面,光电催化分解水实验表明其产氢效率得到大幅度提高.同时制备了Ni(OH)2/BiVO4和Fe(OH)2/BiVO4电极并用于研究NiFe/BiVO4电极的反应机理.在上文基础上,本文采用电子扫描电镜(SEM)、高分辨投射电镜(HRTEM)、X射线衍射(XRD)、紫外可见漫反射(UV-Vis DRS)等表征手段和线性扫描伏安法(LSV)和电流时间(I-t)等对其光电化学活性进行了测试,研究了NiFe/BiVO4电极在发生水氧化时的反应机理.SEM结果表明,Ni(OH)2是以纳米片组成的纳米球负载于多孔BiVO4表面;而当Fe(OH)2负载于BiVO4表面时,BiVO4的纳米尺寸减小;NiFe-LDH纳米粒子负载于BiVO4表面时,可以明显看见BiVO4纳米颗粒表面包裹着一层更小的纳米粒子.这证明了Ni(OH)2,Fe(OH)2和NiFe-LDH纳米粒子均成功负载于BiVO4表面.这也得到HRTEM结果的确认.UV-Vis DRS结果表明NiFe-LDH纳米粒子能有效拓宽BiVO4的吸收边,从而增加对可见光的吸收,增加了对光的利用率.LSV测试结果表明,暗反应条件下Ni(OH)2/BiVO4比NiFe/BiVO4和Fe(OH)2/BiVO4电极的起始电位更低,说明Ni(OH)2有更好的传输电子性能;而在光照条件下,在同一电位时NiFe/BiVO4比Ni(OH)2/BiVO4和Fe(OH)2/BiVO4电极的光电流值更高.值得注意的是,此时Ni(OH)2/BiVO4比Fe(OH)2/BiVO4电极的光电流值低,这又说明F

催化学报杂志论文
MnOx/g-C3N4光热协同催化净化NO的性能增强和反应机理619-629

摘要:许多研究表明,MnOx和g-C3N4均有催化氧化NO的活性,并且探索了它们各自的转化机理.然而,MnOx/g-C3N4复合材料的光热催化机理仍然是一个未解决的问题.我们通过室温沉淀法直接合成不同摩尔比的MnOx/g-C3N4,并发现其表现出良好的光热协同催化氧化NO的性能.MnOx/g-C3N4催化剂在g-C3N4表面含有不同价态的MnOx.通过原位红外光谱在60°C下研究了紫外-可见光诱导的MnOx热催化NO的机理以及MnOx/g-C3N4光热协同催化NO的机理.结果表明,光照对MnOx热催化NO的过程几乎没有影响,但对MnOx/g-C3N4光热协同催化NO产生积极作用并且形成重要的催化循环机制.具体过程是光生电子(e–)转移到MnOx上参与光热协同的还原循环(Mn4+→Mn3+→Mn2+),且低价Mn离子易给出电子(e–)与光生空穴(h+)相结合而诱导逆向的循环(Mn2+→Mn3+→Mn4+),使活性氧空位再生.通过MnOx(Mn4+/Mn3+/Mn2+)变价而产生的活性氧(O–)可将中间产物(NOH和N2O2–)氧化为终产物(NO2–和NO3–).这将为开发更好的净化NOx的催化剂提供重要的指导意义.XRD表征结果表明,MnOx/g-C3N4复合催化剂的结晶度较低.TEM和XPS表征结果表明,g-C3N4表面含有多种低结晶度的MnOx,主要含有MnO,MnO2和Mn2O3.此外,通过对比MnOx和1:5 MnOx/g-C3N4催化净化NO的XPS结果,发现反应后的MnOx含有大量Mn-Nitrate且Mn3+和Mn4+大幅度减少;同时,反应前后1:5 MnOx/g-C3N4的Mn2+,Mn3+和Mn4+的含量变化微弱.BET-BJH测试结果显示,MnOx/g-C3N4复合催化剂的比表面积和孔容均高于纯g-C3N4.UV-Vis DRS测试结果显示,MnOx/g-C3N4复合催化剂显示了良好的可见光吸收能力.紫外-可见光催化去除NO的测试结果表明,1:5 MnOx/g-C3N4(44%)的光催化活性明显高于MnOx(28%)和g-C3N4(36%).ESR测试结果表明,参与反应的主要活性物种为?O2–自由基.EPR测试结果表明,1:5 MnOx/g-C3N4的氧空位明显多于MnOx,丰富的活性氧空位更有利于电子的迁移且促进Mnn+(n=2,3和4)的变

不同KIT-6老化温度制备的介孔MnO2孔径对其催化氧化乙醇的影响630-638

摘要:乙醇既是一种被广泛使用的溶剂,也大量存在于乙醇燃料车尾气中.它是一种挥发性有机化合物(VOCs),能直接参与光化学反应影响空气质量,因此去除乙醇很有必要.催化氧化法消除VOCs是很有前景的技术,其关键是催化剂的制备和筛选.目前,用于乙醇催化氧化的催化剂主要是贵金属催化剂(Pt,Pd,Rh,Au,Ag)和金属氧化物催化剂(Cu,Mn,Co,Fe),此外,还有一些钙钛矿型催化剂.MnO2具有多种结构(α,β,γ和δ)和形貌(管状,棒状,球状和孔状等).不同形貌和结构的MnO2具有不同的VOCs催化氧化性能.我们已经报道了介孔MnO2,特别是三维有序介孔MnO2,具有良好的乙醇催化氧化活性,有一定的应用前景.然而,KIT-6老化温度对介孔MnO2孔径的影响,以及MnO2孔径对催化氧化乙醇活性的影响尚不清楚.如果通过调整KIT-6老化温度改变介孔MnO2的孔径,很有可能改善催化剂低温还原性,氧物种和活性位等,进而提高其催化性能.本文以40,100和150°C老化合成的KIT-6介孔硅为硬模板,制备出不同的介孔MnO2催化剂,分别记作Mn-40,Mn-100和Mn-150,用于乙醇氧化反应中,讨论了催化剂孔径对其活性的影响.采用X射线粉末衍射(XRD),氮气吸附-脱附(BET),扫描电子显微镜(SEM),氢气程序升温还原(H2-TPR),氧气程序升温脱附(O2-TPD),X射线光电子能谱(XPS)等技术对催化剂进行了表征.XRD广角结果表明,各催化剂均具有软锰矿型MnO2晶相,其中Mn-40催化剂存在少量Mn2O3晶相.XRD小角和SEM结果表明,各催化剂均为介孔材料,Mn-100催化剂的有序度和对称性最好,KIT-6老化温度的改变使Mn-40和Mn-150的有序度和对称性降低.BET结果表明,Mn-40,Mn-100和Mn-150分别具有三孔,双孔和单孔体系.随着KIT-6老化温度的降低,KIT-6的孔径降低,而介孔MnO2催化剂的孔径增加.XPS结果表明,Mn-40因少量Mn2O3晶相的存在而具有较多的Mn3+阳离子和表面晶格氧物种,能增加催化剂氧空位的数量,有

具有高光催化活性的介孔单晶TiO2薄膜的制备639-645

摘要:光催化技术在常温下能够直接利用太阳能来驱动反应,已成为一种理想的环境污染治理和洁净能源生产技术.但是比较多的限制条件阻碍了光催化发展和实际应用,如何有效解决这些限制因素成为光催化技术走向工业化应用必须解决的问题.目前光催化材料研究存在的问题主要包括:(1)研究工作主要集中的粉体催化剂存在分离困难、难以重复利用的缺点,开发与基底结合牢固的薄膜材料是十分必要的;(2)光催化材料本身的光响应范围影响光催化材料的应用,拓宽催化剂材料的光吸收范围是亟待解决的;(3)光生电子和空穴的复合问题是影响光催化剂催化活性的主要因素之一,很多方法被用来阻止电子-空穴对的复合,如:金属和非金属的掺杂、贵金属修饰、异质结、新型催化剂结构的设计等,如何设计促进催化剂光生电子和空穴的分离成为光催化技术应用的重要问题.介孔单晶TiO2通过自组装的方法被制备,成为TiO2的一种新结构材料.介孔单晶TiO2结合了介孔材料的大比表面积、单晶材料的电荷传输快等优点,对于光催化性能有了很大的提高.目前介孔单晶TiO2主要是以粉体的形式存在,但是粉体TiO2的应用受到多方面的影响,如:难回收不易重复利用,与电催化结合难,不能借助电催化提高电荷分离效率等.TiO2薄膜能够解决粉体的不足,近年来,TiO2光催化薄膜得到广泛的研究,TiO2薄膜的制备方法很多,主要有液相制备方法、物理气相沉积法、化学气相沉积法、电化学方法、溅射法等.TiO2薄膜主要是以纳米颗粒的形式沉积在基底上,并且多为多晶和无定形.而对于介孔单晶TiO2薄膜的制备和研究还没有报道.我们通过直接焙烧一步法制备了介孔单晶TiO2薄膜,并对TiO2薄膜的生长情况、表面结构、TiO2晶相和晶体完整程度的变化对性能的影响进行了研究.通过调变Ti与F的比例和煅烧温�

整体式三氧化钨/氧化石墨烯气凝胶增强可见光光催化氧化NO性能646-653

摘要:近年来,光催化技术在去除以NO为代表的诸多室内气体污染物方面展现出巨大的潜力.单质铋和铋系氧化物,非金属氧化物以及钙钛矿等众多半导体光催化材料均具有优异的NO降解效率,但很难控制氧化产物.因而会生成大量毒性更强的中间产物NO2造成二次污染.因此,寻求一种清洁、高效,且具有良好选择性的光催化材料成为了亟待解决的问题.六方相三氧化钨(h-WO3)的价带位置较正,氧化电位较高,具有很强的氧化能力,是一种良好的氧化性光催化半导体材料.然而,WO3催化材料多为粉末状,不仅容易团聚,难以回收利用并且会堵塞检测气路.同时,WO3本身存在的电子-空穴复合率高,弱的可见光响应性等问题使其光催化活性较低.因而,制备具有良好可见光响应,高电子-空穴分离效率的一体化WO3材料是其广泛应用前急需解决的问题.而石墨烯气凝胶是理想的催化剂载体,其较高的比表面积以及多孔状结构可有效地增加催化剂的暴露面积,提升催化剂利用率;更重要的是,氧化石墨烯(GO)具有极高的导电率,可作为电子受体加速电子-空穴对的分离而提升光催化活性.因此,以GO作为基体材料,构建WO3/GO气凝胶一体化材料有良好的应用前景.然而,现在还鲜见有关宏观WO3/GO气凝胶光催化降解NO的报道.本文以偏钨酸铵为钨源,利用体积分数为25%的冰醋酸在180?C条件下制备六方相三氧化钨.通过机械搅拌以及冷冻干燥法制备WO3/GO气凝胶.经光催化氧化NO测试发现其可见光下降解率可达51%,是WO3粉体的3.3倍,并且NO2生成率仅为0.5%,远远低于其他相关光催化材料.采用了X射线衍射(XRD),透射电镜(TEM),X射线光电子能谱(XPS),紫外-漫反射分光光度计(UV-DRS),傅里叶红外光谱(FTIR)和荧光光谱(PL)等手段研究了其光催化性能提高的原因.XRD测试显示,复合材料主体为h-WO3,说明GO的引入并未破坏材料晶体结构;TEM和BET

新型BiOI/g-C3N4纳米片复合光催化剂的制备及其可见光催化活性增强654-663

摘要:近年来,石墨型氮化碳(g-C3N4)作为一种n型半导体光催化剂材料,由于具有较好的热稳定性和化学稳定性,同时具有可调的带隙结构和优异的表面性质而备受人们关注.然而,传统的g-C3N4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷,制约着其光催化活性的进一步提高.因此,人们开发了多种技术对块体状g-C3N4材料进行改性,其中构建基于g-C3N4纳米薄片的异质结复合光催化材料被认为是强化g-C3N4载流子分离效率,进而提高其可见光催化活性的重要手段.BiOI作为一种窄带隙的p型半导体光催化剂,具有强的可见光吸收能力和较高的光催化活性,同时它与g-C3N4纳米薄片具有能级匹配的带隙结构.因此,基于以上两种半导体材料的特性,构建新型的BiOI/g-C3N4纳米片复合光催化剂材料不仅能够有效提高g-C3N4的可见光利用率,而且还可以在n型g-C3N4和p型BiOI界面间形成内建电场,极大促进光生电子-空穴对的分离与迁移效率.为此,本文通过简单的一步溶剂热法在g-C3N4纳米薄片表面原位生长BiOI纳米片材料,成功制备了新型的BiOI/g-C3N4纳米片复合光催化剂.利用X射线衍射仪(XRD),场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试.XRD,SEM和TEM结果显示,结晶完好的BiOI呈小片状均匀分散在g-C3N4纳米薄片表面;紫外漫反射光谱表明,纳米片复合材料的吸光性能较g-C3N4薄片有显著提升;瞬态光电流测试证明,复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中,BiOI/g-C3N4纳米片复合光催化剂显示出了优异的催化活性和稳定性,其光降解活性分别为纯BiOI和g-C3N4的34.89和1.72倍;自由基捕获实验发现,反应过程中的主要活性物�

氮掺杂碳包覆纳米钴颗粒用于硝基芳烃室温选择性加氢664-672

摘要:通过硝基芳烃选择性加氢能高效地制备芳香胺和环胺,其中芳香胺作为重要的化工中间体应用于多个领域(精细化工、商业产品和聚合物).在加氢反应过程中,硝基的还原伴随着生成一些副产物(如亚硝基和偶氮化合物).同时对于含还原性基团的取代硝基苯,硝基的选择还原也面临着很大的挑战.金属钴是常用的硝基加氢催化剂活性成分,但是由于对反应底物的过度吸附,导致其选择性不高.早期研究发现,氮掺杂碳催化剂能有效吸附硝基基团,从而在硝基苯加氢中表现出一定活性,但对分子氢的活化不足.因此,氮掺杂碳作为吸附材料与钴构建复合催化剂,能够发挥吸附和活化氢的协同作用,从而高效催化硝基苯加氢.基于此,本课题组发展了一种制备方法,可将钴颗粒尺寸限制在10 nm左右,且包覆在氮掺杂碳中,并应用于对硝基苯酚的室温选择性加氢反应中,发现相较于碳负载钴和氮掺杂碳催化剂,所制催化剂在室温下表现出了很好的活性和选择性.在此基础上,本文采用元素分析、X射线光电子能谱(XPS)和拉曼光谱(Raman)等手段对催化剂形貌和结构进行了研究.表征结果表明,保持钴前驱体的量不变,随着氮化碳加入量的增加,催化剂中氮掺杂浓度提高;当氮化碳/钴>1时,氮掺杂浓度不变.红外结果表明,与普通碳载体相比,氮掺杂碳对硝基苯有很强的吸附作用,而氮掺杂碳包覆的钴催化剂也表现出同样的结果.通过调节氮的掺杂浓度,一方面可以修饰碳载体的电子结构,增加表面缺陷的浓度,提高与反应底物的相互作用;另一方面可以促进电子由钴颗粒转移至与之相连的氮原子上,因此进一步促进钴颗粒对分子氢的活化作用.该复合结构的催化剂实现了底物吸附和氢活化的协同作用,氮掺杂碳将反应底物吸附在表面,钴颗粒活化氢,随后解离的氢原子与表面吸附物反应,从而实现硝基苯的

Sb对Pd基催化剂用于常压直接合成H2O2的促进效应673-681

摘要:H2O2作为一种高效绿色氧化剂,广泛应用于造纸、纺织、水处理等工业领域.目前蒽醌法是工业上生产H2O2的主要方法,相比之下,利用H2和O2直接合成H2O2,能耗低,污染小,适合与下游工艺技术进行耦合.而缺乏高性能催化剂是制约直接法合成H2O2工业化的主要原因.本文通过浸渍法制备了一系列负载型Pd-Sb/TiO2双金属催化剂,并用于常压下H2O2直接催化合成反应.利用透射电子显微镜(TEM),X射线光电子能谱(XPS),H2/O2程序升温脱附(H2/O2-TPD),X射线衍射(XRD),原位CO吸附的傅里叶变换漫反射红外光谱(CO-DRIFTS)等手段对催化剂的电子和几何结构进行解析,深入研究了助剂Sb对该体系的促进作用.结果显示,与单金属Pd催化剂相比,适量金属Sb的加入有效提高了催化性能,抑制了副反应的发生.当Pd/Sb摩尔比为50/1(Pd50Sb)时,H2O2的选择性高达73%;但是当Pd/Sb为2时,催化剂对生成H2O2几乎没有活性.TEM和XRD证明,Sb的加入显著促进了Pd颗粒在载体TiO2上的分散.XPS和H2-TPD实验,发现,Sb改变了催化剂表面Pd2+/Pd0的比例,抑制了金属Pd的氧化;同时,Sb主要以氧化态存在,在催化剂表面形成Sb2O3氧化层,覆盖表面的Pd活性位,从而抑制了反应中H2在催化剂表面的活化以及H2O2加氢副反应的发生.O2-TPD结果表明,随着Sb的加入,O2的脱附峰明显减弱,表明Pd-Sb/TiO2不利于O2的解离吸附.此外,原位CO-DRIFTS实验结果表明,Sb均匀分布在Pd-Sb催化剂表面,致使有利于生成H2O的连续Pd活性位明显减少,而有利于合成H2O2的单个Pd原子活性位明显增加.总的来说,Sb对Pd表面起到了显著的修饰作用,提高了催化剂表面O2的非解离活化,从而促进了H2O2的高选择性合成.但是过量Sb的加入会抑制催化剂对H2的活化作用,致使催化剂活性下降,因此优选Pd/Sb的比例对于提高催化剂性能具有重要作用.

CeO2/NaNbO3复合物的水热合成及其光催化性能的提高682-692

摘要:钙钛矿型NaNbO3由于其非线性光学、铁电、离子导电性、高声速、光催化性能和光折变等优良性能而备受关注.在光催化反应中,宽禁带宽度(≈3.24 eV)使NaNbO3具有较高的导带底(CBM)和较低的价带顶(VBM).因此,它表现出强烈的光氧化和光还原能力.众所周知,钙钛矿型光催化剂光电子激发和传输能力的增强归因于其较高的对称性.因此,具有高对称性的立方NaNbO3有利于电子激发和转移.但是,一些固有的缺点,包括电荷分离效率低、量子产率差和光催化活性差等,限制了其在光催化领域的实际应用.为了解决这些问题,一种有效的方法是与其他半导体结合,形成具有改善光催化活性的异质结复合物.CeO2作为传统的催化剂在光催化领域得到了广泛研究.CeO2具有稳定、无毒的特点,是一种n型半导体.目前,研究人员已经发现CeO2与不同半导体的耦合可以提高CeO2的光催化活性.这归因于能级水平的适当匹配.本文通过简易水热法制备了高活性的CeO2/NaNbO3异质结复合物,并采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM,HRTEM)和紫外-可见漫反射光谱(DRS)等表征技术研究了所制光催化剂的物相结构、样品形貌和光学性能.所制样品的光催化活性通过光催化降解无色抗菌环丙沙星(CIP)和染料罗丹明B(RhB)证实.结果表明,在紫外和可见光照射,CeO2/NaNbO3复合物比纯NaNbO3具有更高的光催化活性.此外,CeO2/NaNbO3复合物中CeO2的最佳质量比为2.0 wt%.紫外光照射下光催化性能的显著提高是由于CeO2/NaNbO3异质结的形成不仅提高了光生电荷在界面范围内的迁移速率,而且降低了光激发产生的电子和空穴的复合率.可见光照射下内置电场的存在促进了电子和空穴的分离,提高了光催化性能.此外,利用光致发光(PL)光谱、光电流、电化学阻抗谱和捕获实验证明了样品的光催化反应机理.捕获实验结

金属钯纳米颗粒/氮化钛复合材料对水中2,4-二氯苯酚的电催化氢化脱氯693-700

摘要:随着社会经济的快速发展,含氯有机物,特别是含氯苯系物,在农业、化工和医药等领域的使用量逐年增多,而使用过程中不合理的排放和控制致使含氯苯系物对生态环境,特别是水体环境的污染日趋严重.含氯苯系物具有高致毒致癌性,易生物富集,且很难被完全降解矿化,已被国家环保局认定为优先控制污染物.常规的废水处理工艺,如吸附、氧化及生物降解等,效率不高,且具有二次污染风险.电催化氢化脱氯技术是一种新型特别针对废水中含氯有机污染物的处理工艺,是通过在阴极电解还原水,原位生成原子态氢,以进攻苯环上C?Cl键,通过C?Cl键断裂H原子取代,使含氯苯系物完全转化为苯系物,达到去毒去害化的目的,近年来越来越受到研究者的关注.在整个电催化氢化脱氯技术中,高效稳定的电催化剂合成是关键,决定着脱氯效率、脱氯动力学、产物选择性及能量的利用率.本文报道了一种简易、无需添加任何表面活性剂的湿式还原法制备金属钯/氮化钛(Pd/TiN)和金属钯/碳(Pd/C)复合材料.在该复合材料中,金属钯颗粒具有均一的纳米尺寸(约5.0 nm)和球状形貌,且均匀分布在TiN和C载体上.作为针对水体中代表性含氯苯系物2,4-二氯苯酚的电催化氢化脱氯反应催化剂,Pd/TiN所展现的活性和稳定性均优于TiN和Pd/C,这源于TiN载体的促进作用.当TiN与Pd复合时,相应形成的Pd-TiN界面可改变Pd表面的电子结构,进一步优化Pd产活性氢及其吸附活化2,4-二氯苯酚的性能,因而其催化氢化脱氯活性增加.阴极工作电压是该催化反应中一个重要操作参数,决定了电催化氢化脱氯的效率和最终产物的构成.实验表明,?0.80 V vs Ag/AgCl是最佳操作电压,此时2,4-二氯苯酚的电催化氢化脱氯效率最高,可达到93.27%,且可实现最大程度的2,4-二氯苯酚向苯酚转化.脱氯反应路径研究发现,在Pd/TiN催化剂上2,4-二氯苯酚�

紫外/TiO2/芬顿复合工艺增强在近中性pH值下对布洛芬的降解能力701-709

摘要:药品及个人护理品(PPCPs)造成的潜在环境污染已引起广泛关注.布洛芬(IBP,2-(4-异丁基苯基)丙酸)作为苯丙酸类非甾体抗炎药物,是一种在水环境中广泛检测到的PPCPs类物质.水环境中的IBP主要来自制药企业排放和人体代谢物,因IBP具有不易挥发、物理性质稳定、半衰期较长和不易被生物吸收等特点,其在环境的残留浓度较高且污染风险大.目前,传统的水处理工艺并不能有效治理水中的IBP,比如:混凝剂和絮凝剂对IBP的去除效率低,吸附和膜处理运行成本过高且不能矿化IBP.近年兴起的光催化技术利用·OH和O2·-等强氧化性活性物种降解水中有机污染物,将其彻底矿化,实现污染物的无害处理.光催化技术适用于常温、常压和中性pH环境,该环境特点与污水环境十分匹配,适合应用.但异质光催化通常发生在催化剂表面,有效反应活性位少,反应速率不够高.相比而言,同质芬顿反应能够均匀、快速地在整个溶液中发生反应,但芬顿反应必须在酸性条件下才可以进行.本文整合了异相光催化和均相光-芬顿反应的优点,设计了紫外/TiO2/芬顿(PCF)复合工艺,评估了在中性pH下对典型的PPCPs布洛芬的降解效果.对比实验结果表明,PCF复合工艺对IBP的降解速率比传统的UV,UV/H2O2,Fenton,光-Fenton和光催化快得多.动力学分析发现,IBP的降解遵循两阶段的一级反应动力学,且速率常数k1>k2.本研究进一步优化了运行参数,确定IBP降解的最佳条件为:pH=4.2,[Fe2+]0=0.20 mmol/L,[Fe2+]0/[H2O2]0=1/40,[TiO2]0=1.0 g/L.pH值的增加造成IBP降解速率略微降低,但在30 min反应时间内,中性pH(6.0–8.0)与最佳pH条件下的降解效率完全相同,证明PCF在中性pH下进行水处理切实可行.数据分析发现,lnk1和lnk2均与1/pH0,[IBP]0,[H2O2]0,[H2O2]0/[Fe2+]0和ln[TiO2]0线性相关,据此建立了IBP去除效率的数学预测模型,通过验证发现,动力学模型曲线与实验数据高度�

不同阳离子(NH4+,Na+,K+,Ca2+)溴化物对商用SCR催化剂化学中毒影响机制研究710-717

摘要:燃煤飞灰中的碱金属和碱土金属对NH3-SCR催化剂的活性有显著的影响.近年来,研究者针对碱金属/碱土金属氧化物对SCR催化剂中毒作用开展了大量研究.另一方面,研究普遍认为,含溴化合物对提高SCR催化剂汞氧化性能具有明显促进作用.目前为止,针对碱金属/碱土金属溴化物对SCR催化剂影响的系统研究较少.我们课题组系统研究了不同阳离子的溴化物(NH4Br,NaBr,KBr和CaBr2)对商用V2O5-WO3/TiO2催化剂性能的影响.与未中毒样品相比,KBr中毒后的催化剂(记为L-KBr)上NOx转化率明显下降,而NaBr和CaBr2中毒的催化剂(分别记为L-NaBr和L-CaBr)上的SCR活性也有一定程度的降低.另外L-NaBr,L-KBr和L-CaBr催化剂的N2选择性较差.XPS结果显示,KBr中毒后化学吸附氧(Oα)比例减小;同时,KBr中毒后还原性和表面酸度降低,这些可能是导致L-KBr催化剂的活性和N2选择性变差的主要原因.对于L-CaBr催化剂,中毒后化学吸附氧Oα比例有所增加,这与H2-TPR结果显示可还原性增强一致.O2-TPO结果显示,L-CaBr催化剂可氧化性降低,说明CaBr2中毒还是影响到催化剂表面的氧化还原循环.催化剂CaBr2中毒后表面被覆盖减少了反应活性位数量,但表面酸性的增强可能会抵消活性位点损失带来的负面影响.NH3氧化结果显示,NH3在L-CaBr催化剂表面发生过氧化反应,特别是高温下生成较多N2O,降低N2选择性,这可能是高温下L-CaBr催化剂SCR活性和N2选择性下降的重要原因.CO2-TPD结果表明,L-KBr和L-CaBr催化剂表面碱性强度增加,可能有助于增加NOx物种的吸附量.基于以上活性评价和表征分析结果,我们尝试建立了不同溴化物中毒的催化剂表面酸碱性、氧化还原和催化性能之间的关系.

离子交换法制备高光催化活性Bi2WO6@Bi2S3异质结纳米片718-727

摘要:社会经济快速发展的同时,也带来了日益严峻的环境污染问题.半导体光催化氧化技术因节能环保而在环境领域有广阔的应用前景.作为最具有代表性的半导体光催化材料,TiO2因为其禁带宽度(3.2 eV)比较大,只能被紫外光激发,因而对太阳能的利用率较低.作为一种最简单的含铋层状氧化物,Bi2WO6的禁带宽度(2.7 eV)相对较小,可以部分利用太阳光中的可见光,因而受到广大研究者的青睐.但是,Bi2WO6光催化材料的可见光响应范围较窄,仅能被波长小于450 nm的光激发,且激发后的光生载流子容易复合,导致光催化效率不高.因此,迫切需要对Bi2WO6光催化材料进行结构修饰与改性,采用拓展其光响应范围和抑制载流子复合,来提高其光催化活性.本文采用离子交换法原位合成了具有核-壳结构的Bi2S3@Bi2WO6纳米片,充分利用Bi2S3优良的可见光响应性能和半导体异质结光催化剂的构建,来提高Bi2WO6的光催化活性.结果表明,随着Na2S·9H2O用量从0增加到1.5 g,所得催化剂的光活性不断提高,X3B的降解速率常数由0.40×10?3 min?1增加到6.6×10?3 min?1,催化剂活性提高了16.5倍.当进一步增加Na2S·9H2O的用量时(1.5?3.0 g),复合催化剂的光活性下降.这是由于过多Na2S·9H2O的引入导致在催化剂表面生成了没有光活性的NaBiS2层(Bi2S3+Na2S=2NaBiS2),占据了催化剂的活性位点,阻碍了染料分子与催化剂的直接接触.Bi2WO6@Bi2S3异质结纳米片光活性的提高,可归因于Bi2S3的敏化作用极大拓展了复合催化剂的光响应范围;另一方面,Bi2WO6和Bi2S3两者之间的半导体异质结效应有效促进了光生载流子在空间的有效分离,抑制了光生电子-空穴的复合,从而提高了复合催化剂的催化效率.本研究为其他半导体复合材料的原位生长制备提供了新的思路.