催化学报杂志

发表咨询:400-808-1731

订阅咨询:400-808-1751

催化学报杂志 CSCD期刊

Chinese Journal of Catalysis

  • 21-1195/O6 国内刊号
  • 0253-9837 国际刊号
  • 1.52 影响因子
  • 1-3个月下单 审稿周期
催化学报是中国化学会;中国科学院大连化学物理研究所主办的一本学术期刊,主要刊载该领域内的原创性研究论文、综述和评论等。杂志于1980年创刊,目前已被万方收录(中)、CA 化学文摘(美)等知名数据库收录,是中国科学院主管的国家重点学术期刊之一。催化学报在学术界享有很高的声誉和影响力,该期刊发表的文章具有较高的学术水平和实践价值,为读者提供更多的实践案例和行业信息,得到了广大读者的广泛关注和引用。
栏目设置:研究快讯、研究论文、综述

催化学报 2018年第02期杂志 文档列表

催化学报杂志综 述
高效氧催化反应中的金属有机骨架材料207-227

摘要:氧电催化反应包括氧气还原反应(ORR)和氧气析出反应(OER).作为核心电极反应,这两个反应对诸多能源存储与转换技术(比如燃料电池、金属空气电池以及全水分解制氢等)的能量效率起决定性作用.然而,ORR和OER涉及多个反应步骤、多个电子转移过程以及多相界面传质过程.这些复杂的过程较大程度上限制了ORR和OER的反应速率.从理论和实践两个方面来看,ORR和OER都需要高效电催化剂的参与来促进其反应速率,从而能够最终提高上述能源存储与转换技术的能量转换或利用效率.目前,以Pt,Pd,Ir,Ru为代表的贵金属基电催化剂具有十分突出的电催化性能.但是,过高的成本和过低的储量始终制约着贵金属基电催化剂在催化ORR和OER反应方面,乃至在能源存储与转换技术领域的规模化应用.因而,开发高效非贵金属基氧电催化剂成为近年来能源存储与转换领域的研究重点之一.在众多已经报道的非贵金属基氧电催化剂中,金属有机骨架材料(MOFs)备受瞩目.MOFs是一类由有机配体和金属节点通过配位键自组装而成的晶态多孔材料.它们具备超高比表面积、超高孔隙率以及规则性纳米孔道.相比较其他传统的多孔材料(比如活性炭、分子筛、介孔炭、介孔氧化硅等),MOFs最主要的优势在于它们的结构和功能可以依据需求通过选择合适的有机配体和金属节点进行便利地设计,或通过后处理进行必要的改性和调节.基于独特的多孔特性以及结构与功能的可设计、可调节性,MOFs在气体分离与存储、异相催化、化学传感、药物输送、环境保护以及能源存储与转化等领域都具有潜在的应用价值.因而,近年来,MOFs备受基础研究领域和工业界的青睐.针对MOFs开展的基础研究和应用开发逐渐成为诸多领域的研究焦点.也正由于MOFs具有的上述优异特性,尤其是结构与功能的可设计、可调节性,使得设计制

单核第一过渡周期金属水氧化催化剂228-244

摘要:由于传统化石能源的不可再生性,其储量日益减少.同时,传统化石能源的使用对环境产生了巨大影响,给人类社会带来了一系列问题,包括温室效应、酸雨等.因此,进入二十一世纪以后,人类面临着日益严峻的能源危机和环境问题,寻找清洁、高效的替代能源已经迫在眉睫.太阳能被认为是一种洁净的可再生能源.自然界通过光合作用将太阳能转化为化学能,在这一过程中,水被氧化产生氧气,同时释放出的电子和质子通过和二氧化碳作用生成碳水化合物.为了模拟这一过程,人工光合作用可以直接将电子和质子结合形成氢气.由此生成的氢气也被认为是洁净的可再生能源,因为在其燃烧过程中只产生水.因此,通过光致水分解析氢析氧的人工光合作用受到了越来越广泛的重视.水分解可以分为两个独立的半反应,即水的氧化析氧和水的还原析氢.水的氧化无论在热力学还是动力学方面,都存在着非常大的阻碍.在热力学上,两分子的水氧化生成一分子氧气需要提供很多能量(ΔE=1.23VvsNHE).在动力学上,由于涉及到四个氢原子和两个氧原子的重组,并且涉及到氧氧键形成并释放出一分子氧气,因此水氧化是一个非常缓慢的过程.在自然界,水的氧化主要发生在光合作用中,在绿色植物的叶绿体中完成.通过对光合作用的研究,科学家们发现氧气的产生由光系统II(PSII)中的释氧中心来完成.释氧中心是一个钙锰簇合物,由四个锰和一个钙组成(Mn4CaOx).自然界水分解产生氧气的过程给了我们很大启示,对设计和研究高效稳定的水氧化催化剂具有一定的指导意义.目前水氧化催化剂主要有两大类.第一类是基于材料的水氧化催化剂.该类催化剂的催化效率高,过电势小,但是对水氧化催化过程的机理缺乏深入研究.第二类是基于金属配合物的分子催化剂.相比基于材料的催化剂,分子催化剂具有以

催化学报杂志快 讯
含1,2二取代的苯并咪唑配体的Zn(II)络合物上化学固定CO2转化为环状碳酸酯245-249

摘要:合成了一种新的Zn(II)配合物ZnCl2(L1)2](1)(L1为2-(2-噻吩)-1-(2-噻吩甲基)-1H-苯并咪唑),并采用NMR和IR光谱、元素分析、ESI-HRMS光谱测定和热重分析等对它进行了表征,其分子结构也由单晶X射线衍射确定.络合物1含有单核四面体Zn(II)单元,即所谓的锁定的几何结构,这源自分子中存在弱的分子间S···?和?-?配体间相互作用.通过简易的合成路线即可制得苯并咪唑配体及其与Zn(II)配合物.采用CO2与环氧化物耦合生成环状碳酸酯反应考察了1的催化活性,以及反应条件的影响.该配合物在无溶剂条件下可高效催化多种环氧化物的转化,具有较好的转化率,TONs和TOFs.

催化学报杂志论 文
高效钴氧化物催化羧酸可控加氢制醇250-257

摘要:羧酸选择加氢是合成醇的重要方法,廉价高效的催化体系仍然在探索中.我们利用地球上储量丰富的钴氧化物作为催化剂,通过控制催化反应过程,进而实现高选择性地催化羧酸加氢制备醇.一系列含有不同官能团的羧酸可以被选择加氢至相应的醇类化合物,反应选择性可以满足工业生产要求.通过一系列的谱学表征以及理论计算,我们证实了钴氧化物在羧酸选择加氢反应中的优选活性位点位为氧化亚钴,从而建立了催化剂与反应活性之间的构效关系,为催化剂的理性设计提供指导.首先,我们选取硬脂酸加氢反应作为模型反应,通过对地球上储量丰富的氧化镍、四氧化三铁和四氧化三钴的催化活性对比发现,四氧化三钴催化剂活性最高,在473K,2MPa氢气条件下,反应速率可以达到1.2mmol/(h·g).对四氧化三钴催化剂进行不同温度的预还原处理,我们发现催化剂的活性得到显著提高,其中573K还原的样品活性最高,反应速率可以达到7.3mmol/(h·g),要远远高于贵金属催化剂Pd/C(0.6mmol/(h·g))和Pt/C(1.8mmol/(h·g)).XRD结果表明,随着还原处理温度的不断升高,催化剂由四氧化三钴变为氧化亚钴,最终变为金属态的钴.当还原温度为573K时,催化剂的组成为单一相氧化亚钴.XPS测试结果表明,当还原温度为573K时,样品中只含有Co2+的信号峰,并且Co/O的比例为1/1,进一步证明样品是纯态的氧化亚钴.从TEM照片中可以发现,在原始的四氧化三钴样品中观察到晶面间距为0.467和0.244nm,分别对应四氧化三钴的(111)和(311)晶面.而对于573K还原的样品只观察到一种晶面间距(0.246nm),对应氧化亚钴的(111)晶面.结合表征手段和硬脂酸催化加氢活性结果,我们得出氧化亚钴是573K还原样品催化羧酸加氢反应的活性位点.理论计算结果进一步证实了这个实验结论.理论计算结果表明,在氧化亚钴(111)晶面,硬脂酸加氢转换为十八醇�

χ-氧化铝的添加对纯的和修饰的γ-氧化铝上H2S氧化反应性能的影响258-274

摘要:考察了γ-Al2O3,(γ+χ)-Al2O3和α-Al2O3的结构性质和酸性对其催化H2S直接氧化反应性能(活性、选择性和稳定性)的影响.采用红外光谱(FTIR)与氨-程序升温脱附(NH3-TPD)方法对氧化铝作用下H2S转化为S的反应性能与其酸性进行了比较.结果显示,H2S吸附主要发生在弱Lewis酸位.含有χ相和/或Mg2+修饰的γ-Al2O3样品具有更高浓度的弱Lewis酸位,并表现出更高的催化活性.当氧化铝样品用硫酸溶液处理后,表现出强Lewis酸位性质,且Lewis酸位点数量显著下降.而当用HCl对氧化铝进行修饰时,其对Lewis酸位强度的影响很小,保持着弱Lewis酸位的性质,且其Lewis酸位数量与未修饰的样品相比增加了二倍,但处理过的样品中含有Al–Cl键.用硫酸盐和氯离子修饰过的氧化铝样品在H2S氧化反应中的催化性能均较低.

桥联有机硅烷组装多级孔TS-1聚集体及其催化性能研究275-282

摘要:TS-1分子筛在H2O2参与的有机物分子选择氧化及环氧化反应中具有优异的催化性能,一直广受关注.目前,随着精细化工反应中大分子及液相反应的增多,目前工业上使用的微米级尺寸的沸石晶粒催化材料因其狭窄的孔道和较大的扩散阻力而越来越不能满足工业的实际生产需求与应用.小晶粒纳米沸石由于具有较大的外比表面积和较高的晶内扩散速率,因而在提高催化剂的利用率、增强大分子转化能力、减小深度反应、提高选择性以及降低结焦失活等方面均表现出优越的性能.然而,尺寸低于100nm的沸石又存在着分离问题.因此,具有高催化活性、又能一步实现分离与回收的纳米沸石聚集体的合成,引起了人们的研究兴趣.目前可以通过使用聚苯乙烯球,球型阴离子交换树脂,硅烷化聚合物,聚合诱导胶体聚集(PICA)等实现纳米沸石聚集体材料的合成.其中采用有机硅烷化试剂来制备多级孔纳米沸石聚集体材料提供了一种新的路线.在沸石晶体表面修饰上有机硅烷化试剂,含Si–C键的有机硅烷化物种可以有效地阻止沸石颗粒的晶体生长,抑制形成大的沸石晶体,从而得到纳米粒子聚集体;同时有机硅烷化物种也对纳米沸石进行了表面改性,提高了其疏水性.特别是在有机相中硅烷化沸石可以形成小的、均匀的、聚集的疏水性的纳米沸石.同时,硅烷化试剂的本质和分子大小是沸石聚集体中多级孔大小的决定性因素.具有可调结构的多级孔沸石晶体可以通过在常规的碱性沸石合成混合物溶液中添加一个两性有机硅表面活性剂而合成.研究发现,固定在沸石纳米晶表面的机硅烷物种Si–C键能部分抑制纳米颗粒进一步聚集成较大的晶体,使用硅烷化晶种的方法可以合成具有高比表面的多级孔ZSM-5等沸石.然而,目前已报道的通过硅烷化晶种方法中得到的多级孔TS-1沸石材料的尺寸仅有

纳米分子筛LTA包裹Ni-Salen配合物为修饰碳糊电极用于电催化氧化肼反应283-296

摘要:采用柔性配体法将Ni-salen配合物包裹在纳米分子筛LTA的超笼中,用来修饰碳糊电极制得Ni(II)-SalenA/CPE,并采用循环伏安法、计时电流法和计时库仑法考察了该电极电催化氧化0.1mol/LNaOH溶液中肼反应性能.首先采用无有机模板剂法合成纳米分子筛LTA,并用各种技术进行了表征.XRD和粒径分析结果分别显示LTA晶体的平均粒径为56.1和72nm.在Ni(II)-SalenA/CPE电极氧化还原位上水合肼催化氧化反应电子转移系数为0.64,速率常数为1.03×105cm3/(mol·s).电催化反应机理研究表明,水合肼氧化反应通过它与Ni3+(Salen)O(OH)反应或直接进行电氧化反应.阳极峰电流与扫描速率的平方根呈线性关系,表明反应受扩散控制,水合肼的扩散系数为1.18×10?7cm2/s.结果表明,Ni(II)-SalenA/CPE对水合肼氧化反应表现出高的电催化活性,这是由于纳米分子筛LTA的多孔结构以及Ni(II)-Salen的存在.最后研究了水合肼在碱性溶液中Ni(II)-SalenA/CPE电极上的氧化反应机理,发现其为四电子过程,第一个电子转移反应为速率控制步骤,然后是一个三电子过程,产生环境友好的最终产物氮气和水.

氧化锆改性的Ni/LaAl11O18用于CO甲烷化反应:催化剂结构对催化性能的影响297-308

摘要:对于煤制天然气,CO甲烷化技术起着重要作用,其研究核心之一是高效催化剂的开发.目前,CO甲烷化催化剂主要采用金属Ni作为活性组分,但存在高温易烧结和易积炭等问题.因此,如何使其同时具有较高的催化活性和高温稳定性是亟待解决的问题.针对这些问题,本文以高热稳定性的六铝酸镧(LaAl11O18)为载体,采用浸渍法担载金属镍,制备了Ni/LaAl11O18催化剂;以高化学惰性的ZrO2为包覆层,采用改进的连续吸附反应法,将ZrO2前驱体液相沉积在Ni/LaAl11O18表面进行改性,制备了具有包覆结构的Ni/LaAl11O18@ZrO2甲烷化催化剂.探讨了ZrO2在Ni/LaAl11O18表面的分布形式以及不同沉积包覆量对催化剂结构、CO甲烷化催化剂活性和稳定性的影响.分别采用氮气物理吸附、X射线衍射、透射电镜、扫描电镜、氢气程序升温还原、氢气程序升温脱附、X射线光电子能谱、热重分析和电感耦合等离子体原子发射光谱法等手段对催化剂进行了系统表征.结果表明,ZrO2纳米粒子能够同时分布在催化剂活性组分和载体表面,增加了金属-载体间相互作用力,高温还原时可以有效抑制活性金属Ni的烧结,成功构筑了具有显著限域结构的包覆型催化剂.同时,ZrO2的包覆不利于金属的氢气化学吸附.在常压,260-600oC和120Lg-1h-1条件下对催化剂进行了催化活性测试.结果显示,与未改性的催化剂相比,包覆后催化剂上CO转化率略有降低,但是其CH4选择性明显提高,适量的ZrO2包覆对CH4得率有较好的促进作用,但是过量的ZrO2包覆会因占据过多的金属镍表面使得CO转化率显著降低.在常压,550oC和120Lg-1h-1空速的操作条件下所进行的107h稳定性测试结果表明,包覆型Ni/LaAl11O18@ZrO2催化剂展示了良好的高温稳定性,具有优异的抗烧结和抗积碳性能.这主要是因为包覆型催化剂具有良好的“限域”效应,从而显著改善了催化剂的抗烧结性能;同

镁铝酸碱双功能氧化物催化剂上醇胺氧化耦合合成亚胺性能309-318

摘要:亚胺是一类重要的含氮有机化合物,由于具有不饱和C=N双键,可以作为一种有效的氮源,用于一系列含氮衍生物的合成.目前合成亚胺的工艺路线主要是通过羰基化合物和一级胺在强酸条件下缩合;与该路线相比,醇和胺在空气或氧气存在条件下耦合是一条更为绿色的工艺路线,其副产物只有水产生.目前的报道表明,一些具有氧化还原性质的催化剂,如负载型贵金属催化剂和负载型过渡金属氧化物催化剂在该反应中表现出一定催化性能,但很少关注表面酸碱性质对该反应性能的影响.在本工作中,我们尝试将具有酸碱双功能性质的Mg-Al复合氧化物作为催化剂用于该反应中,考察了Mg/Al比、焙烧温度和后处理条件对催化性能的影响.结果显示,Mg/Al=3的催化剂在反应中表现出最优的催化活性;NH3-TPD和CO2-TPD显示,随着镁含量的增加,样品表面碱性中心的数量呈现出先增加后减少的趋势,其中Mg/Al=3的样品表面酸、碱总量最大,而且该样品表面弱碱中心数量也最多;我们通过焙烧和探针分子吸附等后处理手段进一步调控了催化剂表面的酸碱性质,初步结果表明在酸碱中心的协同作用下可以有效地催化醇和胺的氧化耦合反应;其中弱碱性位可能是活化醇的主要活性中心,而醇的氧化是该反应的速控步骤,因此可以推测表面弱碱中心的数量在一定程度上决定着催化剂在该反应中的性能.

MIL-101(Cr)-NH2负载Pd低温催化糠醛高选择性加氢生成四氢糠醇319-326

摘要:随着资源枯竭和环境污染严重问题的凸显,生物质转化的研究越来越多,特别是生物质催化裂解制备生物燃料及高附加值的化学品.糠醛是一种半纤维素酸解的产物,也是生产糠醇、四氢糠醇、2-甲基呋喃、环戊酮等的重要原料.其中四氢糠醇既可以用于生产其他高附加值化学品,也可以用作生物燃料或者燃料添加剂.虽然Pd/MFI,Ni/SiO2,Pd-Ir/SiO2等催化剂均可用于糠醛选择加氢制备四氢糠醇,但是反应通常在高温高压条件下进行.为此我们希望找到一种在温和条件下使用的高效催化剂.MOF多孔材料具有丰富的孔道结构、极高的比表面积、表面可修饰的特点,还可与其他客体发生相互作用,进而影响催化性能.因此本课题组合成了一种含有氨基的MOF材料MIL-101(Cr)-NH2,进一步利用表面氨基吸附Pd的氯酸盐前体,经还原直接制得负载型催化剂Pd@MIL-101(Cr)-NH2,并用于糠醛选择加氢反应.本文采用X射线粉末衍射(PXRD)、热重分析(TG)、N2物理吸附-脱附、透射电镜(TEM)等手段表征了所制的MOFs和催化剂.通过将MIL-101(Cr)-NH2和不同Pd@MIL-101(Cr)-NH2的XRD谱与标准谱图对比,发现MIL-101(Cr)-NH2已成功合成,并在催化剂制备过程中和反应之后仍然保持稳定.TG结果表明,所制备MIL-101(Cr)-NH2在低于350°C时结构不会被破环.MIL-101(Cr)-NH2的比表面积可达到1669m2g?1,孔容达1.35cm3g?1,从而为Pd纳米粒子均匀分散在载体上提供了可能性.各Pd@MIL-101(Cr)-NH2样品的TEM照片我们看出,Pd纳米粒子可均匀分散在MIL-101(Cr)-NH2上,粒径为3?4nm.对比实验表明,氨基与金属的相互作用有利于Pd纳米粒子分散均匀.将Pd@MIL-101(Cr)-NH2用于糠醛选择加氢反应时,在40°C,2MPaH2的温和条件下,反应6h后糠醛完全转化为四氢糠醇其选择性接近100%.表现出比文献报导的更加优异的催化性能.这得益于高度均匀分散的Pd纳米粒子,以及催化剂载体与Pd纳米粒子的配�

吡啶基桥联双四唑钌(II)配合物催化酮的转移氢化反应327-333

摘要:含氮配体具有稳定性好、易于合成等优点,而且其过渡金属配合物表现出较高的催化活性,因而在配位化学和均相催化等研究领域受到了广泛关注.基于吡啶骨架的三齿NNN配体具有良好的配位能力和丰富的配位模式,如吡啶桥联的对称配体2,2':6',2''-三吡啶、2,6-双噁唑啉基吡啶、2,6-双亚胺基吡啶和2,6-双吡唑基吡啶等在有机合成及配合物催化剂制备等方面得到广泛应用.2,6-双四唑基吡啶也是基于吡啶的多齿配体,已被用于合成发光材料或高效回收次锕系元素等,但是其在催化领域的应用较少.过渡金属催化的不饱和化合物的转移氢化反应具有反应条件温和、不直接使用氢气等优点,因而受到越来越多的关注.一系列优异的配体及配合物在转移氢化反应中脱颖而出,如对甲苯磺酰手性二胺配体、2-甲胺基吡啶钌配合物、配体中含有NH官能团的过渡金属配合物等.我们也报道了几种吡啶基桥联的含氮配体及其钌配合物,并应用于催化酮的转移氢化反应.在此基础上,本文合成了三种连有不同膦配体的2,6-双四唑基吡啶钌配合物,并用于催化酮的转移氢化反应.从N2,N6-二对甲苯基-2,6-吡啶二甲酰胺(1)出发,经氯代/环化两步反应合成4-氯吡啶基桥联双四唑化合物(2),配体2与RuCl2(PPh3)3在对应的反应条件下制得三种连有不同膦配体的2,6-双四唑基吡啶钌配合物(3),其分子结构通过核磁共振波谱和X射线单晶晶体结构测定得到确认.将这三种钌配合物应用于催化酮的转移氢化反应,当催化剂用量为0.5mol%时,在异丙醇回流条件下,比较连有不同膦配体的2,6-双四唑基吡啶钌配合物的催化活性.膦配体为1,4-双(二苯基膦)丁烷的钌配合物3b表现出更高的催化活性,含有双三苯基膦的钌配合物3a则表现出与3b相当或略低的催化活性,含有1,5-双(二苯基膦)戊烷的钌配合物3c活性最差.以3b为催化剂拓展

基于多金属氧酸盐的介孔离子催化剂催化苯一步氧化制苯酚334-341

摘要:苯酚是一种重要的有机化工原料,工业上主要采用合成路线长、原子利用率低、能耗高、环境污染严重的异丙苯法生产.当前,随着绿色化学的普及,H2O2催化苯一步氧化制苯酚受到越来越多的关注.在研究的众多催化剂中,钒取代杂多酸被认为是该反应最有效的催化剂之一.然而,纯杂多酸易溶于H2O2催化的苯羟基化反应体系,导致污染严重、后处理和分离困难.为了获得可回收的固体杂多酸催化剂,通常将其负载于多孔载体上,但这种方法常伴随着活性组分易溶脱,反应速率慢等缺点.因此,在H2O2催化苯一步氧化制苯酚体系中获得高效、可重复使用的杂多酸基固体催化剂仍然是一个挑战.采用有机单元修饰杂多酸是制备杂多酸基固体催化剂的有效方法.研究表明,有机基团的引入可以有效调控杂多酸的溶解性和氧化还原性.另一方面,催化剂中的疏水微环境也能有效促进非极性底物与催化活性中心的相互作用,提高反应速率,改善催化活性.因此,我们通过离子交换法将对二甲苯型双核咪唑离子液体阳离子与含钒杂多阴离子结合,研究制备了一种具有疏水微环境的介孔杂多酸基离子固体催化剂.采用傅里叶变换红外光谱、X射线衍射、扫描电镜、N2吸附-脱附和CHN元素分析等表征手段对催化剂进行全面分析.结果表明,该催化剂是一种具有较高比表面积的半无定形疏水有机杂多酸盐.在H2O2催化的苯一步氧化制苯酚反应中引导了液-固两相催化体系,在反应时间1h,反应温度70oC,苯酚产率可达到28.9%,与均相纯杂多酸的催化活性基本相当,且催化剂重复使用性能良好.催化剂构效关系和反应动力学研究表明,高比表面积和疏水微环境的构建加快了苯与催化活性中心的相互作用,提高了催化反应速率和产物选择性.同时,咪唑基离子液体阳离子通过分子内的电子相互作用改善了杂多阴离子

高活性甲醇氧化电催化剂Pt-Pd纳米合金的组分可控合成342-349

摘要:Pt纳米粒子由于其本身独特的物理、化学性质以及能够同时促进氧化和还原反应,在工业生产和商业设备中(尤其在直接甲醇燃料电池中)广泛用作重要的电催化剂.然而,Pt作为贵金属在自然界中的含量极其稀少,价格昂贵;另外,甲醇氧化反应中产生的中间产物CO很容易市Pt纳米粒子中毒而失活.因此,迫切需要一种Pt用量少,催化性能高的材料.一制备高活性比表面积的Pt纳米颗粒,可以有效提高Pt利用率.另外,调控纳米粒子使其裸露特定的晶面、边、角以及缺陷也能有效提升催化性能.还可以采用Pt纳米粒子结合其它金属元素形成双金属合金,如,Pt-M(M=Pd,Au,Ag,Ru,Fe,Co,Ni,等)催化剂,可以在减少Pt元素用量的同时有效提升催化活性.在众多可供选择的元素中,Pd相对于Pt价格低廉,但两者具有相近的物理、化学性质以及较高的电催化性能,使Pt-Pd纳米合金呈现十分优异的电催化性能.研究表明,Pt-Pd纳米合金在酸性和CO环境中能有效催化有机小分子电氧化过程.另外,在酸性环境中,用Pd替代Cu,Ag,Co或Ni,可以有效减少催化剂的腐蚀.本文在乙二醇溶液中同时还原K2PtCl4和Na2PdCl4,在110°C反应5h制备出超细的Pt-Pd纳米合金.通过X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)以及能谱仪(EDS)对合金进行表征,从而确定产物为尺寸4nm左右的Pt-Pd纳米合金,且通过改变金属前驱体的投料比可以有效调控Pt-Pd合金组分(按元素比例分别表示为Pt1Pd3,Pt1Pd1,Pt3Pd1).采用循环伏安法、线性扫描伏安法以及计时安培法等多种手段测试样品在0.5mol/LH2SO4和0.5mol/LCH3OH的酸性环境中(50mV/s)电化学性能,并与商业Pt/C进行比较.结果表明,合金的催化性能和组分密切相关,当Pt元素的含量为75%左右时,Pt-Pd纳米合金表现出最佳的催化活性和稳定性,其中Pt3Pd1的电催化质量活性可达商业Pt/C的7倍之多.我们把Pt-P