科技的人工智能汇总十篇

时间:2023-05-24 16:48:02

科技的人工智能

科技的人工智能篇(1)

1明确选题

本案以科技和失重为主题。现如今的餐饮行业,要将装修风格和餐饮形式都打造的与众不同,打破传统的旧模式,增加独特性,才能吸引消费者。

本案就是典型的案例,该餐厅曾经主要以经营牛排、简餐为主。店铺原有二层楼,面积大约800平方。这次升级设计,以“人工智能”为基调,打造新的风格。目前国内的失重餐厅较少,听闻或是见过的客户都较少,所以失重餐厅是一种创新,能吸引更多消费者。将产品和装修彻底分离,从而形成一种新兴的设计理念。融入科技元素,以失重餐厅为中心,以其独特性来吸引顾客到店消费。

2背景资料和考察调研

2.1背景资料

项目位于重庆市南岸区,店面门口景色优美,消费的同时也可以观赏美景。周围铺面也是甜品,点心一类。而本案这家店风格是独特的,与其他的店并不重复。商铺对面无遮挡物,宽敞明亮,坐在店里可以悠闲的欣赏城市美景。

店面原本的设计是LOFT风格,在原来算是一种时尚潮流,但到现如今却不符合年轻人的审美和潮流。原有店面,里面都是一些以前陈旧的物品,不但不吸引顾客,还给人一种陈旧落后的感觉,并不能促进人们消费的心理。正是因为这些原因所致,我准备将这个餐厅改造为符合科技发展趋势的人工智能餐厅。

2.2考察调研

餐厅原来的设计,照搬了英国伦敦市中心的一家餐厅的设计。该餐厅面积大,可容纳多人同时用餐,品牌设计的目的是体现品牌宗旨。

而我的改造方案以人工智能为中心,整个餐厅充满科技感。做餐饮,设计很重要,细节方面有很多,我的设计理念是用科技为人类服务,设计中心是失重餐厅,让客人感受高端的人工智能科技带来的享受和贴心的服务。

3分析、定位与设计目标

3.1分析与定位

3.1.1设计分析

失重餐厅的三大经营特色:无服务员、无人传菜、无人结账。都是通过高科技来实现,充分体现到人工智能的科技感。

本案不同于其他餐厅,以高端的科技技术、服务标准和要求为基准。让客人花着物超所值的价钱,体验高端的科技。失重餐厅,让菜品飞到餐桌上,利用失重原理,让菜品通过双螺旋通道直接传到餐桌上。无服务员点单,客人用大屏幕餐桌进行点单。无收银员结账,没有具体的工作人员进行收费工作,顾客通过智能化科技进行点餐、下单、结账。餐厅利用传输轨道,将菜品传到指定区域。

3.1.2设计要素

此次店面形象升级中设计独特的风格与设计氛围给人带来的舒适感与文化感,营造一种独特的氛围。该店充分利用高科技,例如大屏幕的点单桌面,无人点单,无人结账,无人传菜等多种科技的应用。让消费者能在整个餐饮空间中能感到独特的舒适感和高端的科技感。一个好的餐饮空间设计离不开商业设计和文化设计,用现代科技文化作为中心,也可以很好的促进社会科技进步,让普通人离科技更近,让高科技触手可得。

3.1.3硬装设计

因为是失重餐厅,用餐区不锈钢材质选用较多,选用拉丝不锈钢,茶色镜面,采用多色乳胶漆,避免视觉疲劳,个别乳胶漆饰面里面暗藏发光灯带,在灯上采用纤维灯珠,用灯光营造科技氛围,用餐区周围的墙体采用的是3D全息投影技术,可根据菜品不同或顾客喜好更换主题,使顾客在用餐时身临其境。等待区硬装用了电影院的装修,采用隔音材料,让顾客在等位期间可以欣赏大片,吸音材料的使用也使用餐区的客人可以安静的享用美食。

3.1.3软装色彩

科技感的冷色调贯穿整个餐厅设计,整体软装设计围绕餐厅主题做搭配,从消费者的心理活动出发,也充分满足客户需要。等待区的座椅采用电影院模式,将电影院和3D立体影视在这个空间中表达出来。用餐区大立柜上陈列绿色植物,使室内空间焕发生机,色彩和谐。因为要表达科技感,所以在此次设计中冷色调颜色运用的较多。为了使空间看起来和谐且适宜用餐,所以在餐桌餐椅的选择上采用的是暖色调的椅子,搭配色彩鲜艳的靠枕,使整个空间达到和谐。

3.1.3灯光设计

灯光在空间中起着重要的作用。灯光的色调、色温、颜色及光照的强度、灯具的具体造型选用等都关系到整个空间的舒适度及美感。在此次设计中,用餐大厅灯光设计上,顶面运用了白色加蓝色的冷光源,照度较高,主要是为了让大厅整个用餐空间看起来干净、整洁、舒适、明亮,适宜用餐和交谈。灯光的搭配,烘托了氛围。餐桌的灯光运用上,暖色的点光源为主要光源,照度低,主要是为了营造出温暖、宁静、安逸的用餐氛围,打造舒适和谐的环境效果。

科技的人工智能篇(2)

1 引言

在这里,我们将向您展示一个新生的学科专业――智能科学与技术,并与您一起走进我国智能科学技术教育领域,共同探讨什么是“智能科学与技术”学科,其学科结构及内涵、外延是什么,什么是“智能科学与技术”本科专业,它是什么时候产生的,其主要教学内容有哪些,培养目标是什么,国内有哪些学校开设了这一专业,目前的状况如何,将来的发展前景怎样等智能科学技术教育中的一系列重大问题。

通过这些研究和讨论,笔者希望能对我国智能科学技术研究生教育和本科教育起到积极的推动作用,为我国智能科学技术领域的高层次优秀人才培养做出有益的贡献。本文仅从宏观角度对这些问题进行总体介绍,目的是使读者能够对我国智能科学技术教育有一个概括性的了解,更具体的研究由本期专刊中的相关论文论述。

2 我国智能科学与技术教育事业的诞生与发展

2.1 “智能科学与技术”本科专业的诞生

我国“智能科学与技术”本科专业的历史可追溯到2001年12月在北京西苑召开的中国人工智能学会第九次全国学术会议(即CAAI-9)。CAAI-9在我国智能科学技术教育史上留下了两个历史性的贡献:一是大会接受了部分学者(例如,时任中国人工智能学会副秘书长的韩力群教授)提出的在我国智能科学技术领域逐步建立本科专业的建议,并由钟义信理事长提议将该新专业的名称确定为“智能科学与技术”:二是大会成立了中国人工智能学会教育工作委员会(由王万森教授任主任),并把筹建智能科学与技术本科专业的任务交给了中国人工智能学会教育工作委员会。

CAAI-9结束后,在中国人工智能学会的领导下,中国人工智能学会教育工作委员会立即展开了对“智能科学与技术”本科专业的积极筹建工作。2002年12月13日,由中国人工智能学会教育工作委员会主办、首都师范大学和北京航空航天大学承办的第一届全国智能科学与技术教育学术研讨会在北京航空航天大学召开。会议得到了北京大学的积极支持。在研讨会上,北京大学智能科学系刘宏教授介绍了我国第一个智能科学系――北京大学智能科学系的有关情况,并提出了北京大学在国内率先开展智能科学技术本科教育的想法。北京大学智能科学技术系成立于2002年9月9日,这是在何新贵院士倡导下,国内高校中建立的第一个智能科学技术系。

在认真研究和充分讨论的基础上,这次大会向全国高校发表了“加快智能科学与技术学科发展”的建议,该建议也被称为“智能科学与技术北京宣言”,在国内部分高校引起了强烈反响。作为我国智能科学技术教育先驱的北京大学智能科学技术系,其“智能科学与技术”本科专业设置申请,分别于2003年10月26日、11月26日和12月5日通过了专家论证组、学部和学校评审,并于12月15日前报到国家教育部备案,同年年底在教育部备案通过。

在此期间,2003年11月20日,在广州召开的CAAI―lO期间,中国人工智能学会教育工作委员会针对智能科学技术教育中的关键和热点问题举办了一个教育论坛。论坛的核心课题是:如何在高等学校设置“智能科学与技术”本科专业,培养大批智能科学技术领域人才。参加论坛的代表从各个不同角度发表了自己的意见,论坛达成的普遍共识是:智能化是信息化最精彩的篇章,信息技术的发展已经为智能科学技术登上科学技术的中心舞台创造了条件,因此,在高等学校设置“智能科学与技术”专业已经势在必行。论坛还希望中国人工智能学会教育工作委员会能在本次研讨基础上,再进行必要的调查论证,结合北京大学等学校的实践经验,形成系统的意见和方案,向国家教育部和国务院学位委员会进行正式汇报,以推动智能科学技术专业的建设与发展。

2004年初,教育部公布了“2003年度经教育部备案或审批同意设置的高等学校本科专业名单”,北京大学“智能科学与技术”专业榜上有名,专业号为080627S。北京大学“智能科学与技术”专业的建立,标志着我国“智能科学与技术”本科专业的诞生和我国智能科学技术教育的开端。

2.2 “智能科学与技术”本科教育事业的发展

继北京大学率先在国内建立“智能科学与技术”本科专业之后,2005年,北京邮电大学、南开大学和西安电子科技大学:2006年,首都师范大学、北京信息科技大学、武汉工程大学和西安邮电学院;2007年,北京科技大学、厦门大学和湖南大学;2008年,河北工业大学和桂林电子科技大学;2009年,重庆邮电大学和大连海事大学先后经教育部批准设立了“智能科学与技术”本科专业。至此,经教育部正式批准,全国高校中设立“智能科学与技术”本科专业的学校已达15个。

几年来,中国人工智能学会教育工作委员会为推动我国智能科学技术教育事业的快速发展,先后组织召开了多次全国性的研讨会、座谈会、论坛和展览等,做了大量的促进工作。

2004年8月15日,由中国人工智能学教育工作委员会主办、首都师范大学承办的“智能科学技术教育高层研讨会”在北京召开,中国人工智能学会指导委员会主席涂序彦教授和中国人工智能学会理事长钟义信教授等到会并作重要指示。作为这次研讨会的主题,韩力群教授做了题为“智能科学与技术专业规范”的报告,刘宏教授做了题为“智能科学与技术学科建设”的报告,彭岩教授做了“国内外智能科学与技术相关学科专业情况”的报告。会后,中国人工智能学会教育工作委员会在这三个报告的基础上,形成了一份《在普通高校设置“智能科学与技术”本科专业的有关材料》,包括以下三个建议,一是《在若干高校设置“智能科学与技术本科专业”的建议》,二是《关于“智能科学与技术本科专业”专业规范的建议》,三是《关于“智能科学与技术”学科专业教育体系的建议》。这些材料后来成为上报教育部有关材料的最初蓝本。

2004年11月6日~7日,由中国人工智能学会教育工作委员会主办、首都师范大学承办的“智能科学技术教育学术研讨会”又一次在北京召开,会议对上述材料进行了认真讨论,形成了《在普通高校设置“智能科学与技术”本科专业的有关材料》的修改稿。会后,该修改稿又经钟义信理事长修改和审阅,于同年12月初以中国人工智能学会教育工作委员会的名义上报到了国家教育部有关职能部门,对当年以及后来教育部对“智能科学与技术”本 资队伍建设方面,北京大学“智能科学与技术”专业走出了一条国外引进与自身提高相结合道路;西安电子科技大学依托优秀创新团队,采取了国内外引进和国内外合作交流相结合的建设方法,其他高校也都采取了相应的有效建设措施。就全国高校“智能科学与技术”专业师资队伍而言,最大的一个优势是具有博士学位的教师比例较高。这一优势为建设高水平师资队伍奠定了很好的基础。

在师资队伍建设成效方面,北京大学“智能科学与技术”专业教学团队先后被评为北京市和部级优秀教学团队;西安电子科技大学“智能科学与技术”专业也被批准为“长江学者计划”一教育部智能信息处理创新团队和国家“111”智能科学与技术创新引智基地。

4 对我国智能科学技术教育的共识

在五年多的发展历程中,我国智能科学技术教育事业经过全国相关高校的不断研讨,目前已达成如下基本共识:

第一,智能科学技术是信息科学技术的核心、前沿和制高点,我国和国民经济的发展需要大量的高层次智能科技人才,在我国学位体系结构中增设“智能科学与技术”博士学位授权一级学科的基本条件已充分成熟,建议尽快在我国学位体系结构中增设“智能科学与技术”博士和硕士学位授权一级学科。

第二,智能科学与技术本科专业经过5年的建设实践,已经具备了在全国范围内快速发展的基本条件,建议取消“试办”,即取消专业代码后面的“s”,在全国范围内加快发展。

第三,经全国智能科学技术教育学术研讨会多次讨论,确立了“智能科学技术导论”、“脑与认知”和“机器智能”为“智能科学与技术”本科专业的第一批核心课程。

第四,在全国智能科学技术教育学术研讨会多次研讨的基础上,确立了“智能机器人”、“智能网络”和“智能游戏”为“智能科学与技术”本科专业教学实验活动的3个重要平台。

5 我国智能科学技术教育急需解决的几个问题

我国智能科学技术教育事业顺应时代潮流,在全国广大智能科学技术教育工作者的努力下,得到了较快的发展,其前景十分光明。但也同任何新生事物的发展规律一样,还有许多重要问题亟待解决。

第一,亟待增设“智能科学与技术”博士学位授权一级学科,尽快完善我国智能科学技术教育体系。这些内容在钟义信理事长的论文中已论述得非常详细,这既是我国智能科学技术教育中的头等大事,也是中国人工智能学会教育工作委员会的一项最重要的工作。

第二,进一步优化专业核心课程体系、突出专业整体特色、凝练特色专业方向。就全国“智能科学与技术”专业建设而言,虽然我们已经确立了的第一批核心课程,但这仅是开始,还需要进一步优化,以使“智能科学与技术”专业能够在我国的专业体系结构中具有更强的整体特色。就各个高校而言,则需要在专业核心课程体系下,更加突出建设自己的特色专业课程,以凝练自身的特色专业方向。

第三,加快制定专业核心课程教学大纲和专业实验教学大纲。对专业核心课程教学问题,我们虽然确立了第一批的三门专业核心课程,但还没有制定相应的教学大纲。对专业实验教学,我们虽然给出了三个教学实验平台,但也没制定相应的实验教学大纲。因此,需要尽快提出专业核心课程教学大纲和专业实验教学大纲,以同时带动专业实验室建设和专业教材建设的发展。

第四,重视优秀教学团队建设,汇聚高水平师资队伍。师资队伍是所有教学资源中最为重要的一种资源,要培养高素质、有创新思维和创新能力的学生,首先必须有一支高素质、高创新能力的教师队伍。在这方面,北京大学和西安电子科技大学做出了表率。我们需要抓住国家、地方及各学校建立优秀教学团队的机遇,汇聚高水平的专业师资队伍,争取有更多的专业进入各级优秀教学团队。

科技的人工智能篇(3)

为深入贯彻落实《新一代人工智能发展规划》(国发〔2017〕35号)、《促进新一代人工智能产业发展三年行动计划(2018-2020年)》(工信部科〔2017〕315号)和《山东省新一代信息技术产业专项规划(2018-2022年)》(鲁政字〔2018〕247号),抓住人工智能产业发展机遇,加快推动崂山区新一代人工智能创新发展,制定本行动计划。

一、总体要求

(一)发展思路

全面贯彻党的精神,以新时代中国特色社会主义思想为指导,全面贯彻落实总书记对山东省提出的“走在前列”的要求,深入实施创新驱动发展战略,聚焦人工智能重点核心领域,建立以企业为主体、市场为导向、产学研用深度融合的人工智能技术创新体系,加速人工智能产业化进程,重点推进以神经网络芯片、核心算法、大数据和云计算等为支撑的人工智能与我区制造业、医疗健康等优势产业深度融合应用,围绕智能交通、智能医疗、智能家居、智能安防、智能教育、智能制造等应用方向,加速产业集聚,推动产业发展,将崂山区打造成为具有全国影响力的产业聚集区。

(二)基本原则

--市场主导,政府助推。充分发挥市场配置资源的基础性作用,坚持企业的市场主体地位,面向市场需求谋划产业发展。同时,注重发挥政府的调控引导、规划指导和政策支持作用,营造良好综合环境,促进人工智能产业快速健康发展。

--需求驱动,应用为本。坚持与人工智能应用市场开发相结合,立足需求,抓应用促发展,主动适应经济和社会发展的需要,积极培育和创造新的市场,深化人工智能的推广应用。

--强化创新,提升能力。强化技术创新、产品创新、管理创新和业务创新,通过创新驱动产业发展,提高核心竞争力和综合服务能力,为人工智能产业发展提供更有力的支撑。

--特色发展,差异竞争。立足崂山比较优势和产业实际,在强化整体实力的基础上,坚持差异化竞争,因地制宜确定人工

智能具有国际国内领先水平的行业优势。

(三)发展目标

--人工智能产业创新体系基本确立。引进及培育5-10家人工智能创新企业,建设3-4个人工智能创新平台,建设人工智能工程(技术)研究中心、企业技术中心和重点实验室,基本形成开放协同的人工智能创新体系。

--人工智能关键核心技术取得重要进展。人工智能基础理论、计算机视觉、自然语言处理等关键核心技术取得重大突破,形成具有标志性的重大科技成果10个以上。

--人工智能重点领域的产品规模化发展。在交通、医疗、家居、安防、教育、制造等重点领域形成一批人工智能标志性产品,在相关领域获得广泛应用。力争到2021年,全区人工智能核心产业规模达到100亿元。

--人工智能产业支撑不断完善。建设青岛联通国际通信业务出入口局,使宽带接入速率和时延满足人工智能产业发展需求。落实崂山新旧动能转换战略,依托崂山产业云图平台,改善营商环境,建设智慧崂山,加强人工智能产业布局总体规划,构筑崂山人工智能产业新优势。

二、重点任务

(一)实施分类培育,构建更具活力的产业体系

实施人工智能骨干企业培育工程,建立大中小微型企业培育梯队,建立崂山区战略性新一代人工智能产业企业数据库,实施分类培育计划。培育出一批自主创新能力强、主业突出、掌握核心关键技术、拥有自主知识产权和品牌优势的巨人、小巨人企业。支持中小企业走“专精特新”发展之路,加快培育一批成长潜力大、商业模式新、产业特色鲜明的细分领域的“独角兽”企业、“瞪羚”企业。支持符合重点产业发展导向的高成长性初创企业和产业链上下游企业加快发展,壮大产业发展后备力量。

(责任单位:区工业和信息化局、区科创委有关部)

(二)紧盯前沿领域,构建面向未来的产业优势

坚持紧盯前沿、打造生态、沿链聚合、集群发展,启动“未来产业”培育计划。以智能交通、智能医疗、智能家居、智能安防、智能教育、智能制造等战略性新兴产业为重点,加大招商引资力度,开展精准招商、产业链招商和以商招商,创造企业入驻良好条件,引进一批创新能力强、行业地位突出、竞争优势明显的人工智能龙头企业,形成区域产业集聚态势,加快推进人工智能重点产业链项目建设,壮大产业规模。

(责任单位:区发展和改革局、区科创委有关部、区工业和信息化局、区行政审批局、区市场监管局、崂山税务局)

(三)强化创新驱动,构建开放共享的产业平台

崂山区将在人工智能产业及其支撑领域与国内外尖端技术企业建立长期、全面的战略合作关系,建立长效机制,助推新兴产业生态建设及新旧动能转换赋能,集中力量打造部级人工智能产业示范区、虚拟现实产业中心、教育数字化转型示范区。依托微软“基于微软人工智能及虚拟现实技术的公共服务平台”等项目,建设人工智能产业公共服务平台和技术创新平台,围绕关键共性技术开展技术攻关。整合政产学研用等资源,推动公共服务平台、领军企业和创新型企业加强合作,汇聚人工智能创新创业资源,提供相关研发工具、检验测评、数字安全、标准化、知识产权、情报咨询等专业化的创新创业服务。

(责任单位:区工业和信息化局、区科创委有关部、区发展和改革局、区电子政务和大数据发展管理中心、区市场监管局)

(四)优化基础设施,构建智能高效的产业支撑

加快布局实时协同人工智能的5G增强技术研发和应用,大力推进青岛联通国际通信业务出入口局项目落地,使崂山区宽带接入速率和时延满足人工智能行业应用需求。利用北方三大对外光缆在崂山登陆和我区信息技术服务业集聚的有利条件,激发运营商积极性,以联通云计算中心为重点,形成50万台服务器的服务能力,依托滨海数据机房等4个数据中心的6300组机柜,打造崂山区为人工智能产业北方最为重要的数据高地之一并辐射全国。同时以强化人工智能研发基础支撑为重点,完善崂山产业云图平台、“三建联动”、国土资源“一张图”等平台,形成一定规模的高质量标注数据资源库,进一步完善崂山区人工智能产业发展环境。

(责任单位:区工业和信息化局、区科创委有关部、区电子政务和大数据发展管理中心、区委网信办、区自然资源局、区城市管理局、区综合行政执法局、区社会治理指挥中心)

(五)发挥前瞻思维,集聚人工智能的高端人才

崂山区主要有中国海洋大学、青岛大学和青岛科技大学3所重点高校,每个高校均开设3-4个人工智能相关专业,拥有多位在科研领域成绩斐然的学科带头人和大量经验丰富的骨干教师,平均每年共向社会输送2000余名人工智能专业人才。依托三大高校的人才培养机制,以多种方式吸引和培养人工智能高端人才和创新创业人才,支持领军人才和青年拔尖人才成长。支持国内外人工智能优势企业、高等学校、科研机构等开展合作,搭建开源技术创新平台,探索开放式协同创新模式。鼓励企业设立首席数据官、人工智能首席专家等岗位,依托国际虚拟现实创新大会等各类平台载体,积极引进人工智能产业发展急需的高端人才。统筹利用崂山区现有人才政策,加强人工智能领域优秀人才特别是优秀青年人才引进工作。对经认定的人工智能及大数据行业领军人才、高端管理人才、专业技术人才等,根据认定结果和服务本区情况,参照本区人才政策的有关实施办法,授予相应人才奖励及补贴。

(责任单位:区人力资源和社会保障局、区财政局、区教育和体育局)

三、实施路径

立足国家发展全局,遵循省市发展目标,准确把握人工智能产业发展态势,找准突破口和主攻方向,全面增强科技创新基础能力,全面拓展重点领域应用深度广度,全面提升经济社会发展和民生应用智能化水平。崂山区将从以下几个方面进行实施:

(一)夯实基础支撑

1.智能传感器

智能传感器是实现人工智能的核心组件,是用于全面感知外界环境的最核心原件,各类传感器的大规模部署和应用是实现人工智能不可或缺的基本条件。紧抓智能传感器市场需求爆发增长、技术创新高度活跃的战略机遇期,聚焦移动终端、智能硬件、物联网、智能制造、汽车电子等重点应用领域,突出创新发展主线,紧紧围绕产业链协同升级和产业生态完善,布局基于新原理、新结构、新材料等的前沿技术、颠覆性技术,做大做强一批深耕智能传感器设计、制造、封测和系统方案的龙头骨干企业,打造一批具有国际影响力的技术标准、知识产权、检测认证和创新服务的机构,建成核心共性技术协同创新平台,有效提升中高端产品供给能力,推动崂山智能传感器产业加快发展,构建我区新一代人工智能产业体系。

专栏1

智能传感器产业发展工程

围绕智能机器人、智能制造系统、智能安防、智能家居、智能医疗等领域,依托本地海尔集团、歌尔智能传感器、Pico、融汇通等重点企业,海尔云谷、歌尔科技产业园、歌尔长光研究院、北京邮电大学人工智能研究院,重点开展安防类传感器、微型麦克风和压力传感器二合一模组、声压磁气流气体集成TOF、火像智能识别传感器等创新项目,打造一批具有国际影响力的技术标准、知识产权、检测认证和创新服务的机构,建成核心共性技术协同创新平台。

国外重点企业:AT&T、IBM、索尼、高通、Maradin、博世、爱普生、卡西欧、UTAC、星点高科技、Acurtronic、亚德诺半导体、应美盛、楼氏电子、意法半导体、英伟达、苹果、三星等。

国内重点企业:高德红外、歌尔声学、士兰微、中芯国际、台积电、华虹半导体、同欣电子、瑞声科技、红光股份、京元电子、共达电声、上海华岭、敏芯微、飞智、速位科技、深迪半导体、小米、海思、君正、华为、中兴、联想等。

2.神经网络芯片

神经网络芯片是人工智能的核心,人工智能产业得以快速发展,得益于海量激增的数据和不断提升的计算能力,而无论是海量数据的获取和存储还是计算能力的体现都离不开硬件载体,即芯片。因此,神经网络芯片就成为当前激烈的人工智能产业比拼中颇具战略地位的一个环节,也是近两年投向人工智能众多资金中最为关注的领域之一。崂山区在神经网络芯片领域的资本与研发投入方面、产业发展现状与国内领先水平仍然存在较大差距,尚处于奋力追赶的落后局面。我区应正视与其他人工智能产业发达地区技术基础和技术水平上的差距,在神经网络芯片领域,冷静判断外部机遇和挑战,客观认识自身优势和弱点,厘清发展关键问题和相应对策,推动我区神经网络芯片产业做大做强、实现整个人工智能产业高质量发展。

3.数据及计算服务

数据及计算服务包括数据挖掘、监测、交易等,为人工智能产业提供数据的收集、处理、交易等服务,及为人工智能开发提供云端计算资源和服务。结合大数据应用开发流程,对数据处理环节进行抽象形成数据智能服务,包括数据集成、数据治理、数据分析和数据可视化等服务;通过提供功能完备的大数据生态服务,帮助完成大数据应用开发,真正的发挥数据的价值。崂山区利用北方三大对外光缆在崂山登陆的有利条件,依托中国联通等项目加快推进云计算中心建设,形成50万台服务器的服务能力,加快推进数据采集和传感设备的研发和产业化。促使联通国际出入口局项目落地,并加强与信通院(青岛)科技创新中心有限公司的合作,开发崂山区5G项目,创新人工智能产业布局。同时依托海尔、海信网络、大快搜索等重点企业,鼓励数据整理、分析、挖掘等模型的研究,将大数据连接、交互、决策融入产品的设计制造和企业的经营管理,提升智能家电、智能交通、智能安防等产业的发展水平。

专栏2

数据及计算服务产业发展工程

围绕数据整理、分析、挖掘等关键数据分析技术与计算支撑能力,重点依托海尔集团、海信网络、中国联通青岛分公司、中科曙光、聚好看、网信科技、大快搜索、民航凯亚、特锐德、赛飞特、融汇通、博云视觉、宇方机器人等,重点围绕大数据中心、城市智能大脑、人工智能训练与测试平台等方面进行项目推进。

国外重点企业:IBM、微软、Teradata、Cloudera、AWS、Tableau等。

国内重点企业:百度、阿里云、腾讯、搜狗、华云数据、今日头条、百分点科技、世纪互联、金山云、数据堂、明略数据、天眼查、海云数据、Social

Touch时趣互动、美林数据等。

(二)突破关键技术

1.人工智能基础理论算法

人工智能基础理论算法是让机器自我学习的算法,包括路径规划、机器学习、深度学习、增强学习等。随着人工智能行业需求进一步具化以及对分析要求的进一步提升,围绕算法模型的研发及优化活动愈发频繁。算法创新将是未来人工智能行业发展的必然趋势,深度学习、强化学习等技术的出现使得机器智能的水平大为提升。业内科技巨头纷纷以深度学习为核心在算法领域开展布局,谷歌、微软、IBM、Facebook、百度等相继在图片识别、机器翻译、语音识别等领域实现了创新突破。崂山区应紧跟产业发展潮流,大力发展人工智能核心算法,同时推动算法开源化、服务化,鼓励企业发展针对性整体解决方案。

2.计算机视觉技术

计算机视觉技术是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。计算机视觉技术日益成熟,应用场景不断拓展,自动驾驶、机器人、智能医疗等领域均离不开计算机视觉技术,市场发展空间巨大。计算机视觉行业巨大的发展前景决定其具有高成长性特点,但行业发展同时伴随高风险性,行业竞争需要比拼企业技术算法能力、资金能力、以及人才资源,同时考验企业能否实现技术迅速落地,对企业综合实力要求高,综合实力不具备优势的企业在行业内将难以生存。依托海信网络、中科曙光、歌尔声学等重点企业,引导企业既注重前沿算法研发,同时兼顾现阶段商业落地与市场拓展。专栏3

计算机视觉技术突破工程

围绕图像视频识别、生物特征识别、目标检测特征定位及提取、模拟训练、即时定位与地图构建(SLAM)等重点方向,重点依托海信集团、海信网络、海信医疗、中科曙光、歌尔声学、Pico、聚好看、黑晶科技、融汇通、民航凯亚、赛飞特、中译语通文娱科技、博云视觉、宇方机器人等企业,中科曙光人工智能产业园、中译语通人工智能视频创新产业基地、国际创新园、天宝国际、交通谷创客工厂等园区,推进机器视觉基础技术研究及家庭、社区场景应用、CAS计算机辅助手术系统、视频特征提取分析、医疗医学影像分割、智能家电领域的类生物图像识别系统机器人视觉叉齿定位系统、3D视觉定位系统等项目。

国外重点企业:谷歌、Facebook、苹果、Synaptics、Rethink

Robotics、ABB等。

国内重点企业:百度、阿里巴巴、京东、腾讯、商汤科技、美图秀秀、云从科技、旷视科技Face++、中科慧眼、超多维、图麟科技、码隆科技、依图科技、深兰科技、格林深瞳、诺亦腾科技、速感科技、海云数据、陌上花科技、触景无限、图森未来、体素科技、图普科技等。

3.自然语言处理技术

自然语言处理技术是人工智能最具挑战的技术领域之一,主要研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、语义理解和问答系统等。在大数据、移动互联网、云计算以及其他技术的推动下,自然语言处理技术产业已经步入快速增长期,未来将带入更多实际场景。但自然语言处理技术具有较高的行业技术壁垒,众多国际知名企业如苹果、微软、科大讯飞等均重点攻克自然语言处理技术,推出大量相关产品。依托大快搜索、中科曙光、歌尔声学、海尔科技等重点企业,鼓励相关企业在自然语言处理技术领域攻坚克难,促进企业间沟通交流,共同进步。

专栏4

自然语言处理技术突破工程

围绕机器翻译、语音识别、语义理解、自动问答、语音合成等重点方向,重点依托海尔科技、中科曙光、中译语通文娱科技、歌尔智能传感器、Pico、黑晶科技、大快搜索、冠义科技、赛飞特等本地企业,推进语音识别及语音交互系统、字幕识别系统、智能翻译学习系统等项目。

国外重点企业:微软、苹果、三星、亚马逊、Nuance等。

国内重点企业:科大讯飞、阿里巴巴、搜狗、云知声、凯立德、捷通华声、思必驰、汉王科技、叮咚音响、I.am+、智齿客服等。

(三)培育创新应用

1.智能交通

崂山区交通智能化水平正在持续提升,互联网与交通融合的步伐也在加快,智能交通已经成为我区智慧城市建设需要突破的重要领域。在城市交通智能管理方面,我区已经研制出多项成熟产品投入市场。依托海信网络科技、中科曙光等企业,强化智能交通等智能系统,以云计算、大数据、深度学习技术为基础构建人工智能交通平台,掌握AI核心,打造人工智能交通生态链。

2.智能医疗

智能医疗是我区人工智能驱动的规模最大,增长最快的领域之一,涌入了大量的投资,相关创新覆盖临床研究、机器人医疗助手、大数据分析、基于基因组学和精密医学的个性化治疗等。基于人工智能的自动检测,将可疑病例筛选,供医生确诊,缩小医生检查范围,提高了医生的诊疗效率。大力发展智能医疗企业如海信医疗等,满足精准医疗、个性化医疗的发展趋势,推动我区智能医疗产业发展。

3.智能家居

依托海尔科技公司、海尔智能家电等重点企业,推动人脸识别、语音识别、自然语言处理、智能搜索、自动控制等技术在智能家居产业的广泛应用。利用传感器和通讯设备对人居环境进行监测形成的数据流,通过云计算和深度学习建立相应模型,依托家用物联网对室内电器设备乃至整个建筑的实时控制,提升家居产品智能化服务水平。

4.智能安防

智能安防业务主要涉及视频监控和多种传感器预警,涉及数据传输、场景图像识别。智能消防业务主要涉及智能传感器应用,火像智能识别。区内主要代表企业有中国安科青岛分公司、中科曙光、融汇通网络、赛飞特等,我区应发挥人工智能安防领域的技术优势,加快智慧城市公共安全技术防范系统产业化、人脸识别综合解决方案研制。研发集成多种探测传感技术、视频图像信息分析识别技术、生物特征识别技术的智能安防与警用产品,构建公共安全智能化监测预警平台,提高我区防灾减灾救灾能力。

5.智能教育

人工智能技术与学校教育融合成为一种未来趋势,为个性化学习和个别化学习的实现提供技术保障,成为教育发展的重要推动力。利用智能技术加快推动人才培养模式、教学方法变革,构建包含智能学习、交互式学习的新型教育体系。依托青岛卫安智能教育、黑晶科技、智海云天等智能教育行业领军企业,结合市场需求,提升教学质量,促进我区未来教育事业发展。

6.智能制造

牢牢把握制造业数字化、网络化、智能化的发展方向,重点发展轨道交通配套设备、智能仪表与检测设备、船舶配套设备、工业智能机器人等产业。智能制造对自动化、智能化的需求越来越高,依托海尔集团、宇方机器人等重点企业,加强专业人才引进和培养,加强产学研合作,推动智能生产线、智能工厂、无人数字化车间等智能制造产业的发展。

四、保障措施

(一)加强组织领导

加强统筹协调和部门协同,建立人工智能产业发展共建机制。推动政府主动服务,建立重点企业与政府和技术行业专家的定期联络机制。加强资源统筹利用,推动建立崂山区人工智能产业发展联盟和产业协会,发挥各类企业、机构、组织的支撑作用。加强重点任务监督检查,严格督查考核,统筹推进人工智能产业发展各项重点任务顺利实施。

(二)完善政策支持

出台推进人工智能产业发展扶持政策,加大财政资金支持力度,落实资金保障,加大对人工智能产业链重点企业、主要环节、关键设备的补贴力度。大力引进和培育人工智能企业、促进人工智能相关产业集聚、优化投融资服务、加强人才队伍、基础建设和应用示范。

(责任单位:区工业和信息化局、区科创委有关部、区财政局)

(三)优化产业布局

将人工智能重大项目优先列入崂山区重点项目计划,优先保障用地用房需求,营造良好的创新创业环境,保障产业发展空间。打造一批人工智能细分领域“单项冠军”,推动龙头企业在崂山建立区域总部、创新中心、孵化基地。整合空间资源,优化产业布局,设立人工智能产业园区,建设国内一流的人工智能产业平台。

(责任单位:区工业和信息化局、区科创委有关部)

(四)维护知识产权

支持企业加强人工智能重点技术和应用领域核心专利培育,力争形成一批高质量的核心专利。探索建立人工智能领域的专利合作授权机制和专利风险防控机制,推动人工智能领域知识产权成果加速转化,带动人工智能产业化。不断健全和完善知识产权保护机制,加强人工智能领域知识产权保护力度。

(责任单位:区市场监管局)

(五)加大宣传力度

加大对我区人工智能领域的优秀企业家、领军企业、创新创业项目、新技术新产品等的宣传力度。支持协会、园区、企业及各类机构组织开展各类人工智能创新论坛、人才交流、产品推介、项目招商等活动,推动企业与企业之间、企业与社会组织之间开展广泛交流,及时研究提出推动人工智能产业发展的对策、措施和建议,营造人工智能创新发展的良好氛围。

(责任单位:区委宣传部、区工业和信息化局)

附件:人工智能关键应用领域发展路线

附件

人工智能关键应用领域发展路线

一、智能交通

重点方向

智慧城市、智能驾驶、车联网、智慧公交等。

重点企业

海信网络、中科曙光、民航凯亚、特锐德等。

重点项目

海信城市智慧心脏、公安实战平台“海信战狼”、大型活动交通警卫保障系统、智能驾驶辅助系统、“车智网”智慧公交系统、自适应信号机、智能车载视频监控调度终端、视频特征提取分析服务器、双目智能驾驶辅助系统;中国海洋大学信息科学与工程学院智慧港口大型机械状态监测与分析系统;中科曙光大规模视频智能分析(SAI);民航凯亚A-CDM系统、自助安检系统、智能交互系统、无线站坪调度系统、青岛新机场运营;特锐德平台系统定制服务、大数据修车、动态定价等。

创新平台

海信公安实战平台“海信战狼”、智慧心脏2.0、公交都市3.0、实战平台2.0、视频大数据系统1.0;民航凯亚航班运行指挥平台、特锐德特来电大数据人工智能平台等。

重点园区

海信全球研发中心、中科曙光人工智能产业园、特锐德工业园。

国外重点

企业

西门子、IBM、阿特金斯、柏城、美国Zoox、美国AEYE、美国MightyAI等。

国内重点

企业

爱驰亿维、蔚来汽车、车和家、智车优行、驭势科技、奇点汽车、景驰科技、极豆车联网、图森未来、纵目科技、清智科技、北京易华录、银江股份、南京莱斯、海康威视、赛为智能、宝信软件、皖通科技、川大智胜、中海网络、浙江大华等。

二、智能医疗

重点方向

智能健康管理、辅助诊疗、智能影像识别、智能影像等。

重点企业

海信医疗、中科曙光等。

重点项目

海信CAS计算机辅助手术系统、SID外壳智能显示系统、智能医学影像分割、智能病灶检测及分类、骨折自动筛查、给予人工智能的超声术中导航项目;青岛科技大学信息科学技术学院智慧医疗与大数据系统、基于云计算和MapReduce的区域预料大数据分析关键技术研究(国家自然科学基金面上项目)等。

创新平台

企业研发中心。

重点园区

海信全球研发中心、中科曙光人工智能产业园、崂山湾国际生态健康城等。

国外重点

企业

直觉外科、英特尔、IBM、微软、Google、美国AiCure、美国Flat-

iron

Health、美国Recursion

Pharmaceuticals、美国Tempus

Labs等。

国内重点

企业

华大基因、依图科技、九爱科技、森亿智能、推想科技、碳云智能、思派网络科技、零氪科技、健培科技、泰格医药、银江股份、宜通世纪、延华智能、和佳股份、迪安诊断等。

三、智能家居

重点方向

智能冰箱、智能电视、智能空调等家电;智能音箱、智能手表等智能硬件;智能窗帘、智能衣柜、智能卫浴等智能家居。

重点企业

海尔科技、海尔智能家电、海信集团等。

重点项目

海尔全屋智能系统、物联网安全操作系统、数据驱动的智能生活服务平台;海信机器视觉基础技术研究及家庭、社区场景应用;中国海洋大学信息科学与工程学院智能家电领域的类生物图像识别系统等。

创新平台

海尔智慧家庭人工智能开放平台、大数据云脑开放平台;中国海洋大学海洋物联网协同创新中心等。

重点园区

海尔云谷等。

国外重点

企业

施耐德、霍尼韦尔、Control4、快思聪、ABB、西门子、威易、罗格朗、科道等。

国内重点

企业

海尔集团、京东微联、华为、阿里智能、米家、美的、杜亚、河东、柯帝、霍尼韦尔、瑞讯科技、roboo智能管家、叮咚音响、公子小白、古北电子、智云奇点、涂鸦科技、小葵智能等。

四、智能安防

重点方向

视频监控、传感器报警等。

重点企业

中国安科青岛分公司、中科曙光、融汇通网络、赛飞特、博云视觉等。

重点项目

中科曙光大规模视频智能分析(SAI);赛飞特危险化学品载体区块链芯片研发项目、智能隐患排查系统、智能咨询、智能安环专家系统、智能应急培训系统、智能应急处置系统;博云视觉未名智瞳监控视频大数据搜索分析系统等。

创新平台

中科曙光大规模视频智能分析(SAI)一体化视频作战平台、赛飞特智能安环家安全托管云平台。

重点园区

中科曙光全球研发总部基地、中科曙光人工智能产业园、天宝国际等。

国外重点

企业

索尼、松下、三星电子、派尔高、安定宝、诶比、亚安、霍尼韦尔、博世安保、三洋、美国智能、HID、美国西屋、捷顺、门吉利

、科松、披克、APOLLO、艾礼富、视得安、加拿大枫叶、博世安保、安居宝、来邦、Aiphone、立林等。

国内重点

企业

TCL商用信息科技、爱谱华顿、安居宝、安康银盾、安威士、保千里、北京天大天科、博云视觉、昌图智能、辰安科技、达实智能、大华股份、云从科技、商汤科技、依图科技、旷视科技Face++、图麟科技、中星微电子、寒武纪科技、海康威视等。

五、智能教育

重点方向

VR教室、多媒体互动课堂、AR娱教等。

重点企业

青岛卫安智能教育、黑晶科技、智海云天等。

重点项目

卫安智能教育机器人;黑晶VR超级教室、神卡王国、AVR定制系列、AR互动体验;智海云天多媒体互动课堂、VR教育软件技术研发、AR娱教、VR多维课堂、StarUR多维创客等。

创新平台

商汤科技人工智能教育研究院、北京邮电大学人工智能研究院、中国海洋大学、黑晶研究院等。

重点园区

青岛智能教育装备产业园等。

国外重点

企业

谷歌、美国Osmo、Knewton、Elemental

Path、DreamBox

Learning、Smart

Sparrow、CogniToys;英国Whizz

Education;瑞典Sana;爱尔兰Immersive

VR

Education等。

国内重点

企业

roboo智能管家、作业盒子、又学教育、英语流利说、微视酷、贝尔科技、小知科技、数字时间、幻景传媒、哆维网络科技等。

六、智能制造

重点方向

智能工厂、智能生产线控制系统、生产线信息化系统和生产线大数据分析、北斗导航芯片和终端产品,智能电表、大气监测仪器仪表、智能工业在线测量分析、油气存储运输设计、船舶压载水等。

重点企业

海尔集团、宇方机器人、海天炜业、宏大纺机、杰瑞自动化、德国菲尼克斯、高科通信、乾程电子、海克斯康、盛瀚色谱、博睿光电、海通机器人、海工英派尔、双瑞海洋、海德威、海泰新光等。

重点项目

海尔互联工厂、宇方机器人智能生产线控制系统、生产线信息化系统、生产线大数据分析、智能AGV

系统、激光AGV叉车、视觉叉齿定位系统、3D视觉定位系统等。

创新平台

海尔工业互联网平台(COSMO)、数字家庭网络国家工程实验室;特锐德山东省智能变配电设备工程研究中心、青岛市智能变配电设备工程研究中心;海信网络青岛市智能交通工程研究中心;天时海洋工程及石油装备研究院、企业技术中心等。

重点园区

高端装备机械产业集聚区(株洲路周边)等。

国外重点

企业

瑞典ABB、德国KUKA、日本FANUC、川崎机器人、AmericanRobot、西门子、霍尼韦尔等。

科技的人工智能篇(4)

中图分类号:G642 文献标识码:B

1 对智能科学技术的再认识

1.1 从“人工智能”到人机系统

Wiener的“控制论”和钱学森的“工程控制论”是人们研制较为简单的系统,且系统运行的环境也不复杂情况下的一面旗帜。

1956年,在美国Dartmouth举行的一个信息科学大会上,J.McCarthy和H.Simon倡议开展人类思维活动规律的研究,并给予其“人工智能”(Artificial Intelligence)的命名。人工智能主要研究用人工的方法和技术来模仿、延伸及扩展人的智能,从而实现机器智能。迄今为止,这一方向虽然已取得了不少成就,如博弈、自动定理证明、模式识别、自然语言理解、自动编程和专家系统等,但是,传统的人工智能在方法论上以符号推理为中心,企图用机器来实现人类的思维活动。所以,许多年来的研究虽然取得了一些成就,但距离人工智能提出的目标还有很大距离。

近三十年来,人工智能进展缓慢。1979年,H.L.Dreyfus《计算机不能做什么?》一书的副标题就是“人工智能的极限”,提出了人工智能存在不可逾越的障碍。紧接着,以人工神经网络为代表的“计算智能”和Brooks的反应式结构(“没有表示”、“没有推理”的系统)给传统的符号智能带来了巨大冲击。特别是日本提出的“第五代计算机”并没有达到预期的目标,仅以实现一个“人机对弈”而告终,这些事实都促使人们对“智能”(或“人工智能”)要有一个重新的认识。对人工智能四十年的研究进行反思,使人们从科学概念上明白了以往不自觉地企图用机器解决一切问题的局限性,并试图从科学观念、研究目标和方法论上打开思路,以重新认识,寻求新的途径。

另一方面,四十年来,特别是从最近二十多年科学技术的发展来看,在当前的信息社会中,信息技术是立国之本,信息化的进一步发展必然走向“智能化”,因此,以“智能”为核心的技术是至关重要的。从两次海湾战争以及其他局部战争,我们可以十分清楚地看出,今后的战争是人――机结合的智能系统之间的对抗,而智能技术将会覆盖几乎所有的工程技术领域。

既然完全基于机器的符号推理(也包括其他的智能方法)不能达到实现人的思维的目的,那么有没有其他道路可循?这是人们都很关心的问题。解决这个问题要从两方面着手。一方面,需要脑科学、认知科学等一些研究人的智慧的基础学科继续研究人的思维规律――这也是人类永远的追求。虽然目前还不能做到这一点,但人们总是在不遗余力、一步一步地向着这一目标前进。当然,这也是人类社会发展赋予智能学科的一个任务,这就是智能科学的目标。另一方面,社会生产、生活、科技、军事各个方面又提出了层出不穷的需求,迫切要求设备、系统、工程要“智能化”,而现在尚没有真正能模拟人的智慧的计算机,因此计算机还不能代替人。解决这个问题只有从两方面入手,一方面实事求是,尽量开拓、发展当前的计算机科学技术,使计算机尽可能多地帮助人做工作:另一方面,尽可能把人的智慧包含到系统中去,人要起主导作用,但要充分发挥计算机科学与技术的优势,创造出最有“智能”的人机结合系统。

具体来说,人机结合的系统就是将人作为一个组成部分包括到系统之中,并能清楚地区分出哪些工作应该由人完成,哪些工作应该由机器完成。在运行过程中,当进行到需要人完成的工作时,系统就将工作交给人;而当需要机器完成时,就将任务转交给机器,最终构成一套和谐的、协调的、高效的运行机制,以保证系统目标的实现。

1.2 “智能”学科的三个层次

根据研究任务的不同,智能科学技术的学科内容可以划分为智能科学、智能技术、智能工程三个层次。

(1)智能科学(Intelligence science)

这是基础研究的层次,它的主要任务是研究人的智慧,建立人机结合系统的理论,并用其模拟人的智慧。智能科学主要包括脑科学、思维科学、认知科学等在内的基础学科。

思维科学着重研究人的思维规律,也就是研究人是如何思维的,这种研究的目的是为了给人工智能提供基础,也就是告诉计算机要模拟什么。而认知科学则是研究人的认识,也就是人是如何认识事物的,并将其扩展去研究动物的智能。

智能科学的成果将是整个智能科技发展的基础和先导。

(2)智能技术(Intelligence Technology)

在智能科学的框架内创建人机结合的智能系统,需要有合适的方法、工具和技术,这就是智能技术。

信息的本质是知识,而知识是构成智能的基础。因此,信息化发展必然走向智能化。

模拟人的某些智能行为,或者在现有系统中增加某些智能功能,是智能技术最基本的能力。针对这些要求,在智能科学理念的指导和启发下,人类已经提出了许多有效的技术和工具,它们被应用在各个领域中,创建出许多卓有成效的智能系统,主要包含如下的技术:

基于传统人工智能方法的智能技术;

基于计算智能(软智能)方法的智能技术;

基于模式识别的智能技术;

人机系统技术(包括多媒体技术,虚拟现实技术);

基于通信的智能技术;

基于多Agent系统的智能技术。  以上列举的是当前部分主流的智能技术,这些技术已经在科学技术特别是在高技术领域中发挥了巨大作用,这也是将自动化推向智能化过程中,需要我们十分关注的技术领域。

(3)智能工程(Intelligence Engineering)

用智能科学的理念和思想,充分运用智能技术工具去创建各种应用系统,这就是智能工程。“智能化”实质上就是智能工程实现的过程和归宿。智能工程是当前科学技术和社会发展的前沿阵地,特别是高技术发展的核心动力之一。同时,它也是当前新技术、新产品、新产业的重要发展方向、开发策略和显著标志。

2 无处不在的智能科技

2.1 前沿高技术是智能科学技术发展的动力和源泉

智能科学技术是一个融合计算机、人工智能、模式识别等研究领域的交叉性学科,这些前沿高技术也是当前智能科学发展的动力和源泉。

在所有系统中,体现智能行为的工具和载体就是计算机。所以,计算机科学很自然地成为智能科学发展最重要的支撑点和原动力之一。

以符号推理为基础的人工智能方法和以人工神经元网络为代表的计算智能方法仍然是当前智能技术的重要组成部分。它们从不同的途径和方法进行问题求解,在搜索、规划、学习等各类问题中取得了相当有价值的成果。

模式识别是人类智能的一种体现。“模式”是一个极为广泛的概念,如图像、图形、文字、语言都是一种“模式”。按Zadeh的定义,“模式识别”是一种从“模式”出发的一种非线性映射,它是一种技术,可以用来实现人类智慧的一部分功能,如文字识别(认字)、语言的说与听等。模式识别的目的是将对象进行分类,可以是图像、信号波形式或者任何可测量且需要分类的对象。模式识别在工业自动化以及信息处理和检索中变得日益重要,这种趋势把模式识别推向工程应用研究的高级阶段。在大多数机器智能系统中,模式识别是用于决策的主要部分。

模式识别技术在各种工程实际系统中大量存在。机器视觉的主要技术基础就是模式识别;OCR(光学字符识别)是模式识别的另一个重要应用,它是识别文字字符信息的很主要的手段;计算机辅助诊断也是另一个重要的应用,多种医学图像处理已成为当前信息产业的一个热点;语言识别当然是模式识别另一个研究和应用的热点。其他如指纹识别,以及其他生物器官的识别、签名认证、文本检索、表情和手势识别,都是很有趣的研究领域,也是用来开发人机结合智能系统的很有价值的技术。

当前,对复杂智能系统进行研究的核心是解决人与机器的结合问题,也就是人作为系统的一个组成部分参与到系统的运行中,系统功能中也应体现出人的一部分作用。人与机器的结合有两个层次,一是人作为一个成员,综合到系统的体系结构中;一是人和机器的结合通过某个“人机界面”来实现。当然,这种界面不仅仅是目前计算机普通采用的图标界面,而是包含了模式识别这类涉及感知方面问题的广义的人机界面。这是当前十分活跃的一个研究领域,最有代表性的包括多媒体技术和虚拟现实(VirtualReality)技术。

此外,在控制科学与控制工程领域,随着智能科学技术的发展,已经形成了一整套智能控制的理论、方法和技术。主要的智能控制方法有:

基于计算机视觉的导航控制:

基于计算智能的控制方法与技术;

基于知识的专家系统控制;

基于自动检测技术的智能制造系统的控制;

以自动规划技术为核心的自主控制系统:

多智能体系统的控制。

这些方法都是智能控制中应用卓有成效的技术与方法。

在信息技术中,人类也广泛地提升了智能化的水平,主要包括信息获取与信息处理等多方面的智能技术:

信息获取:智能传感器网络技术:

信息安全:各种识别技术(指纹、人脸、视网膜等)的应用;

信息服务:语言翻译、信息自动查询、自动化办公系统等:

信息处理:文档理解、目标识别、航测照片判读;

计算机网络智能化:利用软件智能体增强网络服务,计算机网络的智能故障检测等。

2.2 现代工业生产和复杂工程急需智能科学技术

随着社会的发展,人类在生产、生活等各个方面也不断提出新的需求,因此现代工业生产不断壮大,并日趋复杂。现在,现代工业生产和复杂工程急需智能科学技术,一批已经在发挥重要作用的技术如下:

智能自动化和控制技术生产过程监控、产品自动检测和质量控制、工艺参数的优化和自动设定、故障自动诊断的报警等;

智能CAD复杂工程的优化设计智能仪表对工艺参数的自动分析、监测、报警和调整:

智能交通红绿灯管理、基于GPS与电子地图的定位与导航、安全监控、车流自动疏导等;

智能仿真技术,这是大型复杂工程设计不可缺少的手段。

2.3 智能科技是现代军事科技(包括航天领域)最重要的关键技术之一

智能科技是现代军事科技最重要的关键技术之一。近代科技发展的历史表明,军事的需求总是科技创新的最大动力之一,“以军带民”是一般规律。军用技术辐射和带动国民经济是一条促进社会经济发展十分有效的途径。因此,军事科技(包括航天领域)也是应用智能技术最多的领域之一。

未来战争的重要武器――无人作战平台(无人机、无人战车、自主水下机器人、机器人士兵等)的自动导航、路径规划、自动避障、目标识别、自动驾驶和其他自主控制技术等都是智能技术的典型应用。以无人机为例,它是现代战争中掌握制空权的重要手段,在近年来的几次局部战争中都发挥了很大作用,例如它可以进行侦察,发现目标后引导有人飞机实行攻击,并对攻击效果进行评估。

在地面军用机器人中,智能技术也发挥着重要作用。地面军用机器人不仅可以在平时帮助人类排除炸弹,完成要地保安任务,还可以在战时代替士兵执行扫雷、侦察和攻击等各种任务。例如,美国的ALV是一种高水平的陆地自主军用机器人,它采用各种智能技术来实现自主操作。ALV装有高级彩色摄像机(视觉),用以识别道路,同时还配备有阵列激光测距仪,用以识别障碍;它可以根据道路场景规划行车路径,避免碰撞,躲避障碍,实现公路上的自动驾驶,行车速度可达60千米/小时。除此之外,车上还可装载各种仪器,以完成不同的侦察任务。

防爆(暴)机器人是机器人发挥威力的另一重要领域。暴徒、爆炸、火灾以及其他灾害都是非常危险的环境,因此用机器人去处理是减少危险、提高成功率的有效途径。在反恐斗争中,有针对性地研制这类机器人,是当前迫切需要解决的问题。

航天领域综合展现了最高水平的智能科技,人造卫星、航天器和各种太空探测器是当代高水平智能技术的综合体现。在2004年初,在火星成功着陆的火星探测机器人是最有说服力的例子之一。

2.4 为人类生活服务是智能科技发展的广阔天地

为人类生活服务是科技的重要方向。随着人类生活水平的不断提高,生活质量也需要不断改善,服务要求更周到,做到方便、舒适、节约、安全,更具人性化。这种需要也为智能科技的发展增添了新的活力。

在日常生活中,无处不在的服务都和智能技术的发展紧紧扣在一起。事实上,我们身边总有许许多多的智能系统在运转,一个个智能工程在提供着实实在在的服务。例如:

智能交通

红绿灯智能管理、电子地图导航、安全监控、车流疏导等。

智能楼宇

现代的大楼管理系统是一个智能化的综合管理系统。它能够将收集到的楼内相关资料分析整理成具有高附加值的信息,运用先进的技术和方法,使大楼的作业流程更有效、运行成本更低、竞争力更强。

智能信息处理、管理、查询等

医学图像处理

如CT、MR、PET等,都是智能技术的典型代表,也是和人的健康息息相关、不可或缺的智能技术。

智能服务机器人

具有一定智能的机器人代替人做服务工作是一种发展趋势,这也是智能技术为人类服务最有代表性的事件之一。

这类机器人的典型例子有:可以自动完成清扫任务和自动充电的清扫机器人;能辅助医生进行外科手术的医疗机器人;能为病人服务的机器人护士;可在家中进行巡视、监测潜在危险情况并适时报警的家庭保安机器人:用于照顾老、病、残的服务机器人等。

总而言之,只要有需要的地方,就有可能是机器人可以服务的地方。

3 对“智能科学与技术”专业架构的思考

从上面列举的很少一部分实例,我们已经可以看出当前智能科技的发展状况。它无处不在、发展迅猛、功效卓著,已经成为当前科技发展不可缺少的部分。它是许多重大工程的支撑,引领许多传统领域向现代化方向发展,是当代前沿高技术发展的重要方向。

另一方面,计算机科学、信息科学、控制科学等学科的进步,也极大地促进了智能科技的快速发展,智能化科技已经展现出一幕幕诱人的场景。科技发展的根本是人才,“智能科学与技术”大学本科专业已经成功设立,迈出了培养高层次人才的关键一步,这必将推动我国的智能科技更快地向前发展。

目前,追溯各个设立“智能科学与技术”专业学校的本源,可以发现各校之间差别甚大。有的学校的“人工智能”专业从计算机科学延伸而来,有的则来自控制科学和控制工程,还有的由信息科学的其他分支演变而来。在归属方面,有的学校将其归于理科,而有的学校则将其纳入工程学科。此外,设置该专业的行政学院亦有所区别,不同学校的智能学科分别隶属于各类学院。这种现象正好说明“智能科学与技术”这一学科发展的多源性,学科发展的空间大,应用需求面广。

另一方面,面对这样一个蓬勃发展、涉及面极广的新兴学科,如果培养各层次的人才,高校教育应该有一个怎样的架构,已经成为一个不可回避的问题摆在我们面前。解决好这个问题,就可能推动学科和人才培养顺利发展。从学科发展的多源性和应用面的广谱性来看,智能学科不可能作为另一个学科的二级学科来发展。从学科的性质来说,“智能科学与技术”应该建立一级学科的架构。根据我国教育体制的结构以及多层次人才培养的需求,可以设想如下架构。

科技的人工智能篇(5)

人工智能在国家战略层面地位已然举足轻重。人工智能方面的人才需要掌握系统而庞大的知识体系,涉及脑科学,数学、计算机等多门学科,这已经超出当前狭义计算机专业的培养内容。为加快人工智能方向的人才储备,2018年4月,教育部要求高校在计算机科学与技术学科设置人工智能方向,形成“人工智能+X”的复合专业培养新模式[3]。2018年,教育部正式批准35所高校首批建设本科人工智能专业,2019年9月首批人工智能专业的本科新生入学。到2020年,基本完成高校科技创新体系建设和学科体系的优化布局以适应新一代人工智能技术发展,在计算机大类专业下以人工智能为视角探讨本学科所应具备的新的内涵与外延。

目前,高校计算机专业采用的宽口径培养模式,在人工智能方面的人才培养具有相当的局限性,以至于高度浓缩到了仅仅给学生做高级科普的程度。学生难以全面深入地掌握人工智能知识技能,难以具备解决企业关键问题、适应产业发展趋势的能力。因此,在计算机大类专业下发展人工智能学科体系,独立建设人工智能专业,培养卓越的领域人才是当下人工智能战略发展的刚性需求。

二、人工智能产业发展现状

我国的人工智能发展仍处于探索阶段。图1显示了2017年全球高科技企业AI团队的规模统计数据。从图1可以看到,谷歌,微软等国外高科技企业,在AI团队上均有千人以上的规模,相较于国内行业领军者百度或腾讯等企业,领先幅度达到数倍之多。这一现象表明,我国在人工智能人才的储备上存在着巨大缺口,如何培养高质量、高水平、高素质的人工智能方向专业人才,是我国当前互联网、信息行业教育方向中一个亟待解决的重要命题。

图1 2017年全球高科技企业AI团队规模

图2 全球AI领域高校数量分布

我国各重点大学早就展开了许多人工智能相关技术的研究,只是当时人工智能一般会放在研究生教育中,作为计算机科学、互联网信息技术等专业的一个研究方向进行具体探索。人工智能领域研究及学科建设方面都有着广泛而坚实的基础,教研成果丰富,师资力量雄厚。响应人工智能国家战略,我国各重点大学责无旁贷。

围绕人工智能专业建设,本文分析了国内外人工智能相关专业招生和就业现状,提出在计算机大类专业下建设人工智能的专业内涵,明确了人才培养目标,构建出有层次的课程体系架构。期望开拓出一条适应我国人工智能领域发展现状的人才培养模式,为人工智能学科体系布局做出贡献,有望为中国高等教育人工智能人才培养探索一条新的路径。

三、国内外人工智能相关专业招生及人才就业情况

一个领域的竞争归根结底是人才的竞争。人工智能的蓬勃发展造成了人工智能软硬件设计、算法设计、工程管理等各方面人才的稀缺。早在2016年的相关数据显示,中国人工智能的技术人才储备与市场需求之间存在着500万人的缺口。全球AI研究及直接从业者约有30万人,主要分布在高校、AI新兴企业、科技巨头以及其他领域。图2给出了截止2017年末,全球在相关人工智能相关领域高校专业的分布情况。全球主要有293所具有人工智能研究方向的高校,其中美国高校较早地开展了人工智能研究,占据全球的57.3%,一枝独秀。加拿大、中国、印度、英国等国家位于第二梯队,有着较大的提升空间。

国内外相关专业招生情况为人工智能专业的建设提供了一条认识与理解的渠道。斯坦福大学在人工智能领域居于世界领先地位,它在人工智能方面的本科教学涵盖的课程全面而前沿,包括计算生物学、语音识别、认知和机器学习等。学校授予计算机科学理学学士学位。加利福尼亚大学伯克利分校在研究生设置了计算机科学理学硕士学位,内置认知科学技术和人工智能相关的课程。卡内基梅隆大学拥有世界首屈一指的机器人技术,其计算机学院设有专门的机器学习系,包括机器学习辅修和统计机器学习专业。目前,国外高校还未直接将人工智能作为专业应用于本科学生培养。

人工智能的就业前景在当前相当广阔,人才市场需求亟大,但是大多集中于计算机视觉和语音识别等热门应用领域,造成其他领域的人才相对匮乏。国内的信息产业升级,互联网行业的转型,服务业、工业的智能研发都需要大量的人工智能专业人才。自2017年5月中国科学院大学成立人工智能技术学院以来,国内很多高校紧跟步伐,在人工智能人才培养上争相布局。清华大学计算机系从大一下学期开始,引导学有余力的学生进入智能技术与系统国家重点实验室或相关科研机构,跟随导师从事科研工作。北京大学开设的智能科学与技术专业主要建设机器感知、智能机器人、智能信息处理和机器学习等交叉学科的研究和教学。北京航空航天大学、上海交通大学和北京交通大学新设的人工智能研究院均是针对研究生集中培养。南京大学在2018年正式成立人工智能学院,由周志华教授任院长,建设机器学习与数据挖掘和智能系统与应用两个本科专业。

国内外大学本科教育阶段,都还未针对人工智能专业人才进行系统性、独立性地培养。我国每年人工智能方向的毕业生约2万人,远远不能满足市场对人才的需求。成都市人社局的报告明确指出,在成都市人工智能产业中,AI架构师、算法工程师、仿生机器人研发工程师等9类人才紧缺指数达到最高级别。本科教育阶段是学生掌握基础知识技能、形成科学思维、塑造人生价值观的黄金时期。因此,电子科技大学在本科计算机大类专业下开设人工智能专业进行优势提升和改进,直面国家战略需求,紧贴行业形势,为人工智能领域的发展增强年轻的生命力,为国家社会培养人工智能人才提供优质的平台和孵化园,为学生成材孕育强大的基础和肥沃的土壤。

四、人工智能专业建设探索

(一)把握专业建设内涵,明确人才培养目标

国家战略需求、社会人才缺口等宏观背景,是设立人工智能专业的必然因素。长久发展与传承,把握专业建设内涵和人才培养目标是教育的灵魂所在。在筹备人工智能专业的过程中,首先需要明确在计算机大类下建设人工智能专业的意义。自1956年约翰·麦卡锡等科学家正式提出人工智能学科以来,人工智能已逐渐发展成为一门广泛交叉的前沿科学。以计算机学科门类中各专业为基础,吸收生物科学、数学、哲学、文学等学科关键知识,不断促进人工智能学科的前向延伸和拓展。人工智能虽然是多学科融合发展的领域,但是它强调推理、知识、规划、学习、交流、感知,具备影像辨识、语言分析、人机对抗等计算机领域典型应用场景,与其它专业区分明显。同样的,人工智能的学科交叉特性明显不同于目前计算机大类下分的如大数据、信息安全等其他专业,应当作为计算机下独立的学科分支进行探索与研究。

aaa

图3 人工智能专业人才培养的基本要求

人工智能旨在模拟人的意识与思维过程,智能信息处理是它的主流研究和产业化应用方向。其主要的研究内容包括语言识别、图像识别、自然语言处理和专家系统等。近年来,人工智能在经济政治决策,控制系统,仿真系统等应用场景中得到了愈加广泛的重视。无论是从科学技术发展历史,还是从当今新时代新经济发展趋势来看,增设人工智能专业具有十分明显的合理性、迫切性。国内的许多高校将相关专业设置于自动化大类下,没有考虑到由于互联网、大数据等新技术领域带来的影响和冲击,难以强调并突出人工智能自身理论和技术应用,不能很好地满足工业界普遍趋势所提出的人才需求。

面向国家“创新驱动发展战略”与“新一代人工智能发展规划”的重大需求,本文详细剖析了相适应的专业人才培养的基本要求。本文创新性地提出人工智能专业人才所需的各项基本要求,如图3所示。优秀的人工智能方向专业人才应当具备个人素养,创新实践,领导才能以及专业技能四个基本方面的能力。从这四个方面出发,全方位引导与培养学生具备良好的个人素养、扎实的人工智能专业技能、突出的创新实践能力和卓越的领导才能,有效地成长为国际一流工程师、科学家和企业家,在我国人工智能产业发展中贡献力量。

(二)构建课程体系架构,明确毕业评价要求

人工智能专业规划必须清晰、目标明确。在课程设置方面,以学生素质为核心完成课程体系架构设置,构建完备的专业人才培养方案。教学任务分配层次分明地落实在课程实施上,开发严整的教学培养体系。课程体系架构有四大类模块,详细分为公共基础课程、计算机学科基础课程、人工智能专业课程和实践进阶课程。四个模块相互依赖,公共基础课程、计算机学科基础课、人工智能专业课程层层深入,筑起坚实的知识体系高墙,教学过程步步为营,培养学生从基础到专业的能力思维。公共基础课程扎实培养学生基础的人文素养和数理知识,掌握数理相关的建模、仿真、测试与评价过程,完成高中到大学的自然衔接过渡。计算机学科基础课程以硬件类、软件类与计算工具类课程为类别划分,从三个方面循序渐进地培养学生掌握计算机领域的核心知识。学科基础课程侧重于对计算机底层知识、人工智能数学基础能力、计算机原理的教学,为大二专业课程打下坚实基础。

人工智能专业课程下分为核心类、技术支撑类和平台类课程,核心类课程引领学生熟悉人工智能知识基础、行业技术和核心理论。在研究人工智能的众多分支领域中,学习技术支撑类课程力助学生把握成熟的技术和模型。平台类课程基于智能机器人研究创新开发平台,进行智能制造和设计。这些理论课程锻炼学生获取知识、应用知识和创新思维能力,使之为从事人工智能理论研究、技术开发与创新实践保驾护航。

实践进阶课程可以检验学生对理论知识的掌握深度。实践课程与教学贯穿人工智能专业学习始终,以开发动手能力、发掘创新思维、塑造科研精神为目的,培养学生在理论实践、创新创业、合作领导多方面的才能。首先,人工智能专业实验全面覆盖所开设专业的课程。其次,综合素质实践、专业实习、基地实践、毕业设计等环节逐渐帮助学生将课堂知识转换为科研与工程能力。此外,鼓励大二以上的学生加入实验室参与科研,使科研与教学相互融合促进。为学生构建创新实践平台,校企合作的实践实训机制保障了学生真实地了解企业发展动态和社会需求。在人工智能理论与技术两方面都能提升学生的创新实践能力,尽早地明确未来发展方向,制定生涯规划。目前,许多高校学生为了快速迎合时代需求,对人工智能领域浅尝辄止,缺乏扎实的基本功与充分的研究成果,急于求成,在求职过程中屡屡碰壁。因此,学校应提供最大帮助与支持,让学生明确研究方向,鼓励学生在国内外继续深造,成为人工智能领域有真材实料的人才。

国家社会的需求在动态发展,学生受到的教育和训练也应有明确的规划。现阶段的专业培养,对学生的要求应当不仅局限于四年知识的系统传授,更多地要求学生锻炼综合知识,专业技能,创新实践,自我修养等几个方面的能力,使学生成为在人工智能领域独当一面的栋梁之才。

综合知识方面,培养学生具备坚实的人文社科基础知识;具有正确的道德观、社会责任感和工程职业道德;具备数学、自然科学以及人工智能相关基础学科的知识,具备在经济学、管理学等可能应用领域的基本知识,培养学生全方面、多元化的科学素养。

人工智能技能方面,培养学生具备扎实的人工智能专业基础知识,能够针对典型应用领域的复杂工程问题和需求,结合人工智能相关原理与技术,设计系统级或单元级的解决方案。了解人工智能技术前沿研究的状态及趋势,能够基于科学原理并采用科学方法对工程问题进行研究,包括建模、算法设计、程序实现及实验、进行实验收集数据、分析与解释数据以及通过信息综合得到合理有效的结论,加强学生对专业知识的深入理解,分析应用能力。

创新实践方面,借助案例分析、项目设计、科学研究、创新实践竞赛等方式,让学生掌握基本的创新方法,具有创新意识和态度,能够提出创新性的技术路线与方案,并具备较强的方案实现与分析能力。从信息产业、医学、生物学、经济学等实际应用出发,锻炼学生结合面对多样化的应用场景的理论结合、模型设计、实验分析能力。

自我修养方面,让学生对学习过程进行不断的探讨与思辨,组织学生参与知识技术的分享讨论,培养学生在知识综述、工程设计和沟通辩论的能力。通过综合性的实践项目,学生具备充分的组织管理能力、语言和文字表达能力、人际交往能力以及在团队协作能力。培养学生对学习的正确认识,不断适应发展的意识,具备国际视野、跨文化交流、竞争与合作能力,最终成长为人工智能产业的高级人才。

科技的人工智能篇(6)

人工智能是我国科技实现弯道超车的难得机遇。目前国际巨头在人工智能技术上还没有完全形成垄断。我国在人工智能研究上与发达国家相比、甚至与美国相比都不算落后。近年中国科技界开始向人工智能—世界科技之巅发起冲击,如百度引进全世界人工智能泰斗级人物、前“谷歌大脑之父”吴恩达全面负责“百度大脑”计划;科大讯飞启动“讯飞超脑计划”;复旦大学联合十几所高校院所,成立“脑科学协同创新中心”。

业内人士认为如果我国在国家层面加快推进人工智能发展,完全有可能利用市场需求优势、用户数据优势等,实现人工智能技术“弯道超车”,抢占人工智能产业制高点。

当今三个有代表性的“人工大脑”:1、“谷歌大脑”:谷歌的自动驾驶汽车已经完成了总计70万英里的高速公路无人驾驶巡航里程,谷歌的人工神经网络通过观看一周YouTube视频,能自主学会识别哪些是关于猫的内容;2、IBM人脑模拟芯片,该芯片能够模仿人脑的运作模式,擅长进行模式识别,在认知计算方面远远超过传统计算架构;3、“百度大脑”,利用计算机技术模拟人脑,已经可以做到2-3岁孩子的智力水平。

当今人工智能研究热与三大技术突破直接相关。人工智能研究是企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等等。总的来说,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。当今人工智能研究热与三大技术的重大突破直接相关:1、深度学习—核心算法的突破;2、神经元芯片—计算能力的突破;3、大数据—庞大的计算资源。

人工智能将引发产业结构的深刻变革,人工智能可以在国防、医疗、工业、农业、金融、商业、教育、公共安全等领域得到广泛应用,催生新的业态和商业模式;人工智能还可以带动工业机器人、无人驾驶汽车等新兴产业的飞跃式发展,成为新一轮工业革命的推动器。目前倍受追捧的工业4.0、智能家居、无人驾驶、智能安防、智能医疗等发展方向,所代表的无一不是“人工智能+应用场景”发展的最终形态。

投资建议:我们从认知智能、感知智能和智能化场景改造三个维度寻找受益标的:

1、能够有实力进军认知智能领域的公司在全球范围内都寥寥无几,这一领域具有极深护城河和最广阔的应用前景,科大讯飞是A股绝对的龙头;

2、感知智能领域的人脸识别应用有望成为互联网金融的基础设施,我们首推在这一领域已经有深远布局的佳都科技、汉王科技;

科技的人工智能篇(7)

摘要:结合中山大学智能科学与技术专业的建设情况,从教师队伍建设、本科教育的人才培养定位及课程体系设置、发展优势科学研究方向及学科建设等方面,提出有关交叉学科发展的思路。

关键词 :智能科学与技术专业;教师队伍;课程体系;科学研究;学科建设

基金项目:广东省2014年本科高校教学质量与教学改革工程项目“智能科学与技术”(粤教高函[2014]97号);中山大学2014年校级本科教学改革项目“智能科学与技术专业复合型人才培养模式的改革研究”(中大教务[2014]148号)

作者简介:李晓东,男,教授,研究方向为智能控制、人工神经网络,lixd@mail.sysu.edu.cn。

引言

智能科学与技术是一门交叉学科,涉及脑科学、认知科学、人工智能、信息科学技术等学科,主要研究智能行为的基本理论和应用技术。它以人工智能的理论和方法为核心,研究如何用计算机去实现人工智能。它是信息科学技术的核心,也是现代科学技术的前沿和制高点。目前,对智能科学与技术的重要性认识已上升到国家科技发展战略的高度,智能科学已被列入2006年的《国家中长期科学发展规划纲要》中。

自2003年北京大学自主设置智能科学与技术本科专业并在教育部备案以来,我国先后有北京邮电大学、南开大学、西安电子科技大学等20多所高校开办了智能科学与技术本科专业,加快发展智能科学与技术专业教育已成为众多高校的共同愿望。然而实际上,智能科学与技术本身的内涵发展还很不成熟,教育部对此专业甚至还没有统一的教学大纲。2014年中国人工智能学会教育工作委员会对智能科学与技术专业的知识体系与课程设置给出了征求意见稿,可是各高校智能科学与技术专业的建立时间都很短,缺乏足够的办学经验,基本都处于独立发展、各自探索的阶段,不同程度地存在着专业建设问题。为此,笔者结合中山大学智能科学与技术专业的情况,给出以下几点思考。

1 教师队伍建没

国内智能科学系或专业大多是在计算机专业或自动化专业的基础上建立起来的,发展时间短,这就决定了目前国内智能科学系或专业的教师主体具有很大的专业偏向性。智能科学与技术专业本质上是以脑科学、心理学等为基础,以信息学科为实现手段的交叉学科,其所承载的任务不是以上单个学科所能独立完成的。因此,教师队伍一定不能在原有基础上封闭发展,应邀请其他相关学科的教师加入发展,要特别注重引进心理认知学、逻辑学等方面的教师,不断优化教师队伍的知识结构,注意吸收青年教师,强调教师队伍构成的综合性。我们必须像医院培养“全科”医生一样来培养我们的智能科学教师。

以中山大学智能科学与技术专业为例,由于所在的信息科学与技术学院涵盖了电子与通信工程系、计算机系、智能科学与自动化系,涉及信息与通信工程、计算机科学与技术、软件工程、电子科学与技术、控制科学与工程等5个信息科学的一级学科,现阶段学院鼓励智能科学与技术专业在院内跨专业使用教师。因此,专业的课程教育实际上吸纳了5个信息科学一级学科的教师,具有很强的包容性。此外,专业充分利用学校学科门类齐全的优势,积极开展与校内心理学系、逻辑与认知研究所的合作办学,吸引这些系、所的教师为专业开设必修或选修课程,同时为这些科研教学工作提供发展的平台。各专业教师通过参与智能科学与技术这个交叉学科的专业教学,达到了相互学习交流、“全科”培养、共同提高的效果。

2 本科教育

2.1 人才培养模式的定位

智能科学与技术专业的本科教育人才培养模式的定位实际上是多学科交叉渗透人才培养模式的一种探索。专业人才培养应立足于计算机科学与技术、通信科学与工程、控制科学与工程、软件工程、电子科学与技术等学科的相互交叉特性,立足于信息科学的发展方向和《国家中长期科学发展规划纲要》要求,立足于国家,特别是高校所在地区对智能科学与技术专业人才的社会需求。经过几十年的发展,智能技术及其应用已经成为IT行业创新的重要生长点,其广泛的应用前景日趋明显,如智能机器人、智能化机器、智能化电器、智能化楼宇、智能化社区、智能化物流、智能电网等。这些对人类生活的方方面面产生了重要的影响;迫切需要既掌握计算机系统工程的基本技能,又掌握复杂信息处理的智能科技知识,具有智能系统的搭建能力,擅长处理网络环境下大规模复杂的环境行为、机器行为和人类行为的专门科学技术人才。因此,为适应智能化应用的创新发展趋势,专业人才培养的目标应该是培养创新型、复合型的智能科技人才,努力做到两个“复合”,即学生在知识结构方面的复合和学生在理论知识、应用能力、创新能力方面的复合。此外,人才培养还应结合本专业师资力量的实际,扬长避短,努力办出自己的特色。

2.2 课程体系建设

基于智能科学与技术专业创新型、复合型人才培养模式的定位.需要制订出相应的多学科交叉的课程体系,包括规划理论课程体系、实验课程体系和学生实习。具体来说,需要做好专业基础课程、专业主干课程和专业轨道课程的科目设计;需要处理好必修课程与选修课程的关系,合理分配各学期的学分;建设多功能集成的实验室,探索校企合作共同打造学生课外实习基地的模式等;重视基础理论知识,强化学生的应用能力和创新能力培养。课程体系的设置应参考2014年10月中国人工智能学会教育工作委员会对专业课程设置的征求意见稿,既要参考兄弟院校的做法,也要体现出校本专业的办学特色和发展优势。

中山大学智能科学与技术专业目前正在建设以智能系统为统领、以智能机器人为综合实验平台、兼顾物联网和大数据处理的课程体系,并且在数字电路与逻辑设计、信号与系统、人工智能原理、模式识别、计算机网络等专业基础课程和专业主干课程的基础上,设置了丰富的选修课程。特别地,把它们归类形成了不同的专业轨道选修课程集,具体包括:

(1)模式识别轨道选修课程:数字图像处理、人工神经网络原理、数据挖掘、多媒体信息处理、机器学习、计算机视觉等。

(2)智能系统轨道选修课程:机器人导论、自动控制原理、数字图像处理、智能控制与智能计算、人机交互技术、计算机视觉等。

(3)智能传感网络轨道选修课程:传感器与检测技术、嵌入式系统设计与实践、机器人导论、无线传感器网络、无线射频识别技术、物联网导论等。

每年当学生进入选课阶段时,我们都组织学生进行课程体系和轨道课程集的介绍宣讲,让学生了解各轨道方向的内涵,辅导学生的选课决策。借助课程体系的合理配置以及轨道选修课程集的功能发挥,我们引导学生根据自己的兴趣,往不同的智能科学子方向上发展。

中山大学智能科学与技术专业是在自动化系的基础上建立起来的,起初的课程体系难免与自动化专业过于贴近。几年来,通过专业课程体系的建设,我们逐渐改变了与自动化专业课程体系过于重复的现状,强化了多学科知识的融合和对学生实践能力的培养,切实向创新型、复合型人才培养的目标迈进。

3 科学研究与学科建设

3.1 科学研究

高校的教学和科研向来是相辅相成的。教学为科研提供了基础,科研则可以引领教学内容的发展。智能科学与技术专业涉及的学科面很广,如果在科学研究方面过分强调全面性,则会分散研究力量,不能形成明显优势。坚持特色发展,培养构建几个特色研究方向,则是科学研究的切实可行之路。中山大学智能科学与技术专业目前正在组建研究团队,设立学术带头人,制订研究规划,在智能系统与智能控制、认知科学与机器学习、智能电网与新能源等研究方向加强建设,形成研究优势。

智能系统与智能控制研究方向围绕医用穿戴智能设备、服务机器人系统和智能车载系统等;重点研究复杂系统分析与设计中信息处理、信息利用的新理论及新方法;探讨智能感知处理、人机交互方式、终端系统、智能医疗、服务机器人系统的控制等内容;解决车载高性能可靠的计算机系统、车载软件可靠性分析、车载网络优化以及这些理论在无人驾驶和车联网等特定领域的应用问题。

认知科学与机器学习方向以认知科学和人工智能等学科为基础,重点开展人脑、认知和人体行为的关系,智能视频监控.人脸识别和物体识别这3个方面的研究;重点解决智能终端的多媒体信息感知和智能处理问题,特别为服务机器人、智能家居和公共安全解决视觉感知和智能处理的问题。该方向主要研究认知科学与机器学习、智能场景分析与理解、基于生物特征的模式识别等,侧重于智能视觉的应用基础研究和新技术探索。

智能电网与新能源方向致力于为我国,特别是为广东省培养高水平的智能电网和新能源领域的专业人才。由于各种新能源(风能、太阳能、海洋能等)具有波动性和间断性的自然属性,其发电单元不能直接并网,否则会降低电网的电能质量;所以,新能源发电单元与电网之间必须用到功率电子变换器。因此,该研究方向主攻新型功率变换器优化设计及控制,其应用包括智能电网架构下的一系列领域,比如太阳能发电、风力发电、海洋能发电、燃料电池等。一个智能的电网系统将会使电力的传输和供应更加稳定可靠,让每家每户可以优化自己的用电习惯,享受到先进的家居设备。

3.2 学科建设

对于一个学科,没有高层次的研究生教育和高水平的科研,该学科的发展就很难走在同行的前列。中山大学信息科学与技术学院在开办模式识别与智能系统学术型硕士学位研究生教育的基础上,依托自身信息学科齐全的优势,联合中山大学心理学系,正在筹备申报智能科学与技术交叉学科博士点,试图以高层次的博士点教育带动智能科学与技术专业本科和硕士研究生教育的整体发展,壮大科研力量。

我们处于一个信息技术的时代,信息技术不可能停留在电子化、数字化之上,而是要不断走向智能化,因此,智能技术越来越成为信息技术的主流。智能科学处于信息技术的前沿和制高点,掌握利用好信息技术发展的这个规律,对于实现高校信息学科的发展重点转移和跨越式发展具有重要的意义。

由于珠三角地区产业结构的调整与信息新技术的不断融入,传统自动化专业的发展遇到了瓶颈,我们及时调整学科发展战略,以智能科学与技术专业的发展来带动传统自动化专业的发展,结果在招生就业、人才引进、科学研究等方面都取得了良好的效果。另一方面,中山大学信息科学与技术学院的学科建设面比较宽,涉及5个一级学科,而相关教师的体量比较小,因此不可能5个一级学科都均衡建设,而应该重点建设这5个一级学科交叉的部分,即智能科学与技术专业。这对于完善交叉学科布局,提高人才培养质量,引领和推动这些一级学科及心理学专业的发展,有着重要的促进作用。

4 结语

智能科学与技术的发展成果正影响着国民经济的很多领域,已成为一个国家科技发展水平和国民经济现代化、信息化的重要标志。社会需要大量的掌握智能科学与技术知识的高水平专门人才。智能科学与技术专业作为交叉学科来建设,在中国高等教育的历史还很短,其专业教育不同于一般的信息学科,具有一定的特殊性。我们今后还需在师资建设、学生培养、科学研究、学科发展等方面进一步探讨,培养合格人才,迎接智能化社会的到来。

参考文献:

[1]中华人民共和国国务院,国家中长期科学发展规划纲要(2006-2020)[S].2006.

[2]中国人工智能学会教育工作委员会,智能科学与技术专业知识体系与课程(本科)(征求意见稿)[S]. 2014.

[3]邓志鸿,谢昆青,刘宏,北京大学智能科学与技术专业建设的探索与实践[J]中国人工智能学会通讯,2011(2): 36-40.

[4]胡军,李伟生,王国赢,等,重庆邮电大学“智能科学与技术”专业建设中的若干问题探讨[J].计算机教育,2009(11): 57-60.

[5]陈毅东,李绍滋,潘伟.厦门大学智能科学与技术专业建设进展[J].计算机教育,2011(15): 21-24.

[6]张俊,陈飞,冯士刚,大连海事大学“智能科学与技术”本科专业建设实践[J].计算机教育,2012(18): 22-27,30.

科技的人工智能篇(8)

人工智能的发展经历了漫长的历程。特别是20世纪30年代和40年代,智能界发现了数理逻辑和关于计算的新思想。1956年夏季,人类历史上第一次人工智能研讨会在美国的达特茅斯(Dartmouth)大学举行,标志着人工智能学科的诞生。多年来,机器学习、计算智能、人工神经网络等和行为主义的研究深入开展,形成高潮。同时,不同人工智能学派间的争论也非常热烈,这些都推动人工智能研究的进一步发展[1]。人工智能技术已经可以担当信息化和信息社会建设所赋予的重任。我国已有数以万计的科技人员和大学师生从事不同层次的人工智能的研究与学习,人工智能已成为一个受到广泛重视并有着广阔应用潜能的庞大交叉的前沿学科[2]。

人工智能与计算机领域的其他方向有一个比较显著的特点,即以符号处理为主,而其他方向是以数值计算为主。从理论上说,人工智能领域担负着一个极富挑战的任务――揭示智能的本质,从应用上说,人工智能的目标是开发更有用的计算机程序[3]。人工智能课程是智能科学与技术专业的重要基础课程,介绍人工智能的基本理论、方法和技术,为以后高级课程的学习、在人工智能领域的进一步研究和开发工作,奠定良好的基础。

本文以首都师范大学开设的人工智能原理精品课程的教学实践为基础,介绍我们针对不同专业、不同层次学生所开设的相关系列课程。

1课程知识点

人工智能是由脑科学、认知科学、逻辑学、信息科学技术等多学交叉所形成的一个新兴边缘学科。目前,国内外对人工智能的研究存在着狭义和广义两种观点。狭义人工智能通常是指以符号智能为主体的传统人工智能概念。广义人工智能通常是指包含自然智能、符号智能、计算智能、集成智能和分布智能等在内的智能科学技术概念。本课程主要基于广义人工智能的概念,从原理、方法、技术、系统和应用等不同方面,对人工智能进行科学的探讨。人工智能的主要特点是注重知识和推理,强调启发式和不确定性,提倡多学派融合和多技术综合。同时,它又是一个开拓性领域,其新思想和新技术层出不穷,因此,应鼓励学生的创新和实践。这门课程的主要内容包括:人工智能基础、知识表示、确定性推理和搜索、计算智能和不确定性人工智能、机器学习与自然语言理解、分布智能和专家系统等。其主要知识点有:

1) 了解人工智能发展简史、研究目标;了解人工智能的研究方向;理解人工智能的定义、人工智能成功的标志。重点是掌握物理符号系统假设、图灵测试和启发式等概念。

2) 知识表示和推理。要求了解和掌握时间和空间的表示、事件和行动的表示技术;了解和掌握概率推理、Bayes定理方法;了解和掌握谓词演算和归结定理证明。

3) 搜索和优化方法。这部分内容主要介绍启发式搜索策略(A,A*算法)、局部搜索策略(盲人爬山,模拟退火,遗传搜索);了解和掌握博弈方法(min-max搜索, ― 剪枝)。

4) 机器学习。主要讨论机器学习的基本该概念和一些非连接主义的机器学习方法。

5) 神经网络。主要讨论基于神经网络的连接学习机制。

6) 专家系统。专家系统是人工智能应用研究的一个重要领域。它实现了人工智能从理论研究走向实际应用,从一般思维方法探讨转入专门知识运用的重大突破。这部分内容主要是让学生了解专家系统的构成、分类和相关开发工具。

2系列课程设置

2.1两个系列五门课程

为了适应人工智能技术日益广泛的需要,国内外高校普遍开设了人工智能方面的课程。本科阶段开设人工智能课程,主要是为了让学生对人工智能的发展、原理和应用领域有初步了解,启发学生对智能学科的兴趣;而研究生阶段的学习则是要求学生能够掌握人工智能的基本技术和前沿研究内容。为此,针对不同层次、不同专业的教学对象,我校分别开设了两个层次的五门相关课程。从2003年开始为第一届智能科学与技术专业本科生开设了人工智能原理课程。该课程由54学时的课堂讲授和18学时的实验教学组成,是智能科学与技术专业的必修课程和核心课程之一。

从2009年开始,我们又将人工智能课程中的实验教学部分独立出来,安排36个机时,单独作为一门1个学分的人工智能实验课。该实验课也是智能科学与技术专业的必修课程和核心课程之一,目前已完整地开设了两届,受到了学生的欢迎与好评。

同时,我院软件工程专业、信息工程专业、电子信息工程专业及计算机科学与技术专业等信息类专业开设了人工智能概论选修课程,进行36学时的课堂教学,也已经成为这些专业本科生的一门重要的技术基础课程。

2010年我们又面向包括人文社科等全校所有专业开设了人工智能导论这一校公选课(36学时),其目的是使学生了解人工智能的基本概念、原理以及智能技术在不同领域的成功应用,具有一定的科普意义。

在研究生教育中,我们又针对研究生的特点,开设了高级人工智能课程,对研究生进行更深层的理论讲授和前沿研究课题的介绍。

由于人工智能是交叉学科,涉及面广、内容抽象、不易理解,学生往往有曲高和寡、望而生畏的感觉,加之不同专业、不同层次的学生对智能技术的要求有所差别,因此,为了更好地实现差别化教学的目标,提高该课程的教学质量,我们根据已有人工智能课程在教学与实践方面的经验,针对不同教学对象,提供不同的教学深度、教学内容、教学方法和考核方式,力争使智能科学惠及更多的学生。

2.2优选教材与教学内容

在教材选用方面,我们主要采用了首都师范大学王万森教授主编的教材《人工智能原理及其应用》。该教材同时为普通高等教育“十一五”部级规划教材和北京市精品教材,反映了人工智能研究和学科的最新发展,是王万森教授多年的教学与科研经验的结晶。由于广受好评,2007年出版了第2版,该书前后两版目前已印刷了16次,印量5.6万册,已成为国内多所大学的人工智能课程教材和教学参考书。此外,我们还为学生提供N. J. Nilsson的《Artificial Intelligence:A New Synthesis》、蔡自兴教授的《人工智能及其应用》、李德毅教授的《不确定性人工智能》及马少平教授的《人工智能》等教学参考书。

作为课程建设一个重要组成部分,我们十分重视教材建设。除上述王万森教授主编的《人工智能原理》教材外,另一本侧重基础与应用的《人工智能基础及应用》教材正在人民邮电出版社的编辑出版中;还有一本在人工智能实验课基础上,包括教学指导、习题解析和实验指导等内容的北京市精品教材立项,《人工智能习题解析、学习与实践指导》也即将交稿,由电子工业出版社出版。

在人工智能课程教学过程中,针对智能科学与技术专业的学生,我们不仅进行理论讲授,同时还利用人工智能实验课,开展了36个机时的相关实验教学,学生在学习人工智能理论的同时,还能够得到智能软件开发方面的实验训练。该实验课设立了5个基本实验和3个综合实验。其中,5个基本实验分别是:实验1,基于规则的简单动物识别系统;实验2,基于极大极小算法的一字棋游戏;实验3,简单的遗传优化;实验4,简单的可信度推理;实验5,简单的单层感知器学习。对每个基本实验,在给定实验程序框架的前提下,安排了5个实验机时。3个综合实验分别是:实验1,双机对弈五子棋游戏;实验2,基于BP网络的预测与评价系统;实验3,基于Web的不确性推理专家系统。对综合实验,要求每个学生选作其中的一个,安排10个实验机时。人工智能实验课程的设立,强化了学生的知识,激发了学生的学习兴趣,促进了学生对学习内容的理解,提高了学生对智能技术的简单应用能力。为后续课程如智能机器人、智能游戏及智能管理等课程奠定了坚实的基础。

对于非智能科学与技术专业的学生,我们则开展更为灵活多样的教学形式,如展开师生间的讨论,让学生看到问题从提出、分析到解决的全过程。让学生自己去查阅资料,发现智能技术与他们所学专业的关系或在其中的应用。让学生进行课程讲演与展示,如“地理学”专业的学生就讲解了智能技术在地理信息系统中的应用,“戏剧文学”专业的学生讲解了智能动画技术在影视作品中的作用,“法语”专业的学生发现原来机器翻译是这样有趣。采取这样的教学方法,学生普遍反映课堂学习令人印象深刻,整个过程让人回味无穷。

3课程教改

在教学内容改革方面,能适应智能科学技术发展和应用普及的需要,在保持人工智能基本理论和方法的核心地位的前提下,我们不断增加人工智能的新技术。例如,计算智能、分布智能、先进专家系统、新的机器学习方法等。

在教学方法改革方面,积极采用启发与互动、讨论与研究的教学方法。其中,对理论性知识我们多采取启发与互动的教学方法,这种方法有助于对学生理解能力和学习能力的培养。对技能性知识更多的是要求实践,而在课堂上则可采用讨论与研究的教学方法,这种方法有助于培养学生的思维能力和创新能力。

在教学实训方面,我们十分注重实验、实践和训练对人工智能教学和学生能力培养的重要性,积极探索把人工智能实验作为人工智能教学一个重要环节的理论和方法。在国内公开出版发行的所有人工智能教材中,首次把人工智能实验作为一个独立部分写进教材(本课程负责人独著出版的“普通高等教育‘十一五’部级规划教材”《人工智能原理及其应用》第2版)之后,又在国内高校中首次把人工智能实验作为一门独立课程开设,走出了我国人工智能实验的开创性的一步。

在课件建设方面,人工智能多媒体课件,获北京市高校首届多媒体教育软件大赛二等奖。相关课程智能科学技术导论多媒体课件,又获北京市高校第二届多媒体教育软件大赛优秀奖。

4结语

本文是以我校精品课程人工智能原理建设为基础,对系列相关课程在教学内容、教材、教学方法、教学手段、考核方式等方面进行的探讨,总结了该课程在教学和实践方面的一些教改举措。这些举措使得人工智能教学更贴合学生的学习需求。通过认真落实这些举措,使各个层面上的学生都能更好地掌握人工智能的基本概念、基本理论和基本技术,提高实践动手能力,达到本课程预期的教学效果。

参考文献:

[1] 王万森. 人工智能原理及其应用[M]. 北京:电子工业出版社,2007.

[2] 蔡自兴,肖晓明,蒙祖强,等. 树立精品意识搞好人工智能课程建设[J]. 中国大学教学,2004(1):28-29.

[3] 蔡自兴,徐光佑. 人工智能及其应用[M]. 北京:清华大学出版社,2010.

Building the Curriculum System of Artificial Intelligence

PENG Yan, WANG Wan-sen, XIE Da

科技的人工智能篇(9)

一、 机械电子工程的发展史

20世纪是科学发展最辉煌的时期,各类学科相互渗透、相辅相成,机械电子工程学科也在这一时期应运而生,它是由机械工程与电子工程、信息工程、智能技术、管理技术相结合而成的新的理论体系和发展领域。随着科学技术的不断发展,机械电子工程也变的日益复杂。

机械电子工程的发展可以分为3个阶段:第一阶段是以手工加工为主要生产力的萌芽阶段,这一时期生产力低下,人力资源的匮乏严重制约了生产力的发展,科学家们不得不穷极思变,引导了机械工业的发展。第二阶段则是以流水线生产为标志的标准件生产阶段,这种生产模式极大程度上提高了生产力,大批量的生产开始涌现,但是由于对标准件的要求较高,导致生产缺乏灵活性,不能适应不断变化的社会需求。第三阶段就是现在我们常见的现代机械电子产业阶段,现代社会生活节奏快,亟需灵活性强、适应性强、转产周期短、产品质量高的高科技生产方式,而以机械电子工程为核心的柔性制造系统正是这一阶段的产物。柔性制造系统由加工、物流、信息流三大系统组合而成,可以在加工自动化的基础之上实现物料流和信息流的自动化。

二、机械电子工程的特点

机械电子工程是机械工程与电子技术的有效结合,两者之间不仅有物理上的动力连结,还有功能上的信息连结,并且还包含了能够智能化的处理所有机械电子信息的计算机系统。机械电子工程与传统的机械工程相比具有其独特的特点:

(1)设计上的不同。机械电子工程并非是一门独立学科,而是一种包含有各类学科精华的综合性学科。在设计时,以机械工程、电子工程和计算机技术为核心的机械电子工程会依据系统配置和目标的不同结合其他技术,如:管理技术、生产加工技术、制造技术等。工程师在设计时将利用自顶向下的策略使得各模块紧密结合,以完成设计;

(2)产品特征不同。机械电子产品的结构相对简单,没有过多的运动部件或元件。它的内部结构极为复杂,但却缩小了物理体积,抛弃了传统的笨重型机械面貌,但却提高了产品性能。

机械电子工程的未来属于那些懂得运用各种先进的科学技术优化机械工程与电子技术之间联系的人,在实际应用当中,优化两者之间的联系代表了生产力的革新,人工智能的发展使得这一想法变成可能。

三、人工智能

人工智能是一门综合了控制论、信息论、计算机科学、神经生理学、心理学、语言学、哲学等多门学科的交叉学科,是21世纪最伟大的三大学科之一。尼尔逊教授将人工智能定义为:人工智能是关于怎样表示知识和怎样获得知识并使用知识的科学。温斯顿教授则认为:人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。至今为止,人工智能仍没有一个统一的定义,笔者认为,人工智能是研究通过计算机延伸、扩展、模拟人的智能的一门科学技术。

四、人工智能的发展史

1 萌芽阶段

17世纪的法国科学家B.Pascal发明了世界上第一部能进行机械加法的计算器轰动世界,从此之后,世界各国的科学家们开始热衷于完善这一计算器,直到冯诺依曼发明第一台计算机。人工智能在这一时期发展缓慢,但是却积累了丰富的实践经验,为下一阶段的发展奠定了坚实的基础。

2 第一个发展阶段

在1956年举办的“侃谈会”上,美国人第一次使用了“人工智能”这一术语,从而引领了人工智能第一个兴旺发展时期。这一阶段的人工智能主要以翻译、证明、博弈等为主要研究任务,取得了一系列的科技成就,LISP语言就是这一阶段的佼整理佼者。人工智能在这一阶段的飞速发展使人们相信只要通过科学研究就可以总结人类的逻辑思维方式并创造一个万能的机器进行模仿。

3 挫折阶段

60年代中至70年代初期,当人们深入研究人工智能的工作机理后却发现,用机器模仿人类的思维是一件非常困难的事,许多科学发现并未逃离出简单映射的方法,更无逻辑思维可言。但是,仍有许多科学家前赴后继的进行着科学创新,在自然语言理解、计算机视觉、机器人、专家系统等方面取得了卓尔有效的成就。1972年,法国科学家发现了Prolog语言,成为继LISP语言之后的最主要的人工智能语言。

4 第二个发展阶段

以1977年第五届国际人工智能联合会议为转折点,人工智能进入到以知识为基础的发展阶段,知识工程很快渗透于人工智能的各个领域,并促使人工智能走向实际应用。不久之后,人工智能在商业化道路上取得了卓越的成就,展示出了顽强的生命力与广阔的应用前景,在不确定推理、分布式人工智能、常识性知识表示方式等关键性技术问题和专家系统、计算机视觉、自然语言理解、智能机器人等实际应用问题上取得了长足的发展。

5 平稳发展阶段

由于国际互联网技术的普及,人工智能逐渐由单个主体向分布式主体方向发展,直到今天,人工智能已经演变的复杂而实用,可以面向多个智能主体的多个目标进行求解。

五、人工智能在机械电子工程中的应用

科技的人工智能篇(10)

随着我国科学技术的发展,计算机网络技术和人工智能作为新时期的科技产物不断被应用于社会发展的各个领域,对我国的经济发展起到了积极促进作用。特别是计算机网络技术在近年来出现了飞速发展趋势,其自身具有的高效性及跨时空特点等已经深层次地渗透到人们生活、生产、学习的各个方面。计算机网络技术的不断发展和应用,其自身存在的网络安全以及管理方面存在的问题已经表现出与现代社会发展不相符的特点,人们对于该方面问题的关注度不断提升。因此,出现了人工智能应用于计算机网络技术的研究和实践,深入分析人工智能带来的应用优势,加强研究及探析应用趋势,均可有效提升人工智能在计算机网络技术中的应用效果。

1 人工智能应用在计算机网络技术中的优势分析

人工智能是计算机科学技术的分支,是由多种不同领域构成的,例如机器人、计算机视觉等。在现代社会人工智能已经被应用在计算机网络技术中,并得到了不断关注和重视,例如计算机仿真系统、人工控制系统等领域的应用。人工智能技术的应用所具有的优势主要表现在以下几方面:一是人工智能具有更加高效特点,可以将所学各领域知识进行科学合理的应用。优良的思考能力通常是高等生物的主要特征,而人工智能在现代科学的支撑下同样具有思考分析与判断能力。因此将人工智能应用到计算机网络技术中,可以使其对计算机信息数据进行更为科学精准的计算机后期分析处理工作,进而获取到更为科学完整的信息数据,同时还提升了计算机网络的计算效率;二是人工智能提升了计算机网络自身的运行速度、时效性及流畅度。人工智能的应用可以促进计算机用户实现更多时间的处理,比如在模型计算处理过程中,可以应用人工智能具有更为先进的计算能力来开展相应的分析及处理,人工智能对于不确定的信息进行处理过程中具有更高的工作质量及效率,可以应用人工智能获取更为完整和准确的网络信息数据;三是能源消耗少。人工智能的应用可以降低计算机网络技术成本,起到节能减耗的作用。人工智能对于海量数据的计算具有更快的运算速度,节省了数据处理过程中的时间,因而降低了计算机在运行过程中所消耗的能源,节省了社会资源。

2 人工智能在计算机网络技术中的有效应用

2.1 人工智能在网络安全管理方面的应用

计算机网络技术的应用过程中,网络安全管理是每个用户最为关心和关注的问题,计算机网络技术虽然可以给人们的生活、学习、工作等带来便利,但是也会因为网络犯罪分子的存在而造成广大用户信息的泄露,造成用户自身利益被侵犯和损害,尤其是随着现代科技的发展进步,黑客技术也出现了提升,网络信息安全成为计算机网络技术中急需解决的首要问题。因此,相关技术人员不断研究人工智能技术在计算机网络安全管理中的应用方法和效果,通过实践发现人工智能的应用可以促进广大计算机用户成功拦截异常信息,从而更为有效地保证了广大计算机用户的信息安全。目前很多用户在计算机网络运行环境里安装了智能防火墙,通过该项人工智能技术的应用可以更好地做到智能识别,进而完成海量数据的分析和处理,该项技术的应用可以有效减少信息数据在匹配过程中的计算步骤,达到节能减耗的效果。智能防火墙的应用还可帮助广大计算机网络用户有效拦截网络中的各有害信息,遏制网络病毒侵入及传播,进而对广大计算机用户进行了全方位的保护,实现了计算机网络安全管理。再例如,很多计算机网络用户在日常的学习、工作过程中会使用到网络邮箱功能,为了更好地保护网络邮箱的信息安全,可以通过应用智能发垃圾系统,来进行垃圾邮件的分析和处理,保障用户邮箱的安全使用。该技术的应用可以通过对用户邮箱开展全面的信息扫描工作,通过其科学高效的信息分析和处理技术能有精准的发现用户网络邮箱中存在的相关病毒信息邮件、垃圾邮件及残存信息等,还可同时实现对有害邮件的信息分类,并通过信息提醒方式督促计算机用户进行有害邮件的定期处理,以防该类信息对计算机用户造成危害。人工智能入侵检测技术对于计算机网络安全管理起到了重要作用,可以借助其检测系统对存在安全威胁的信息进行预防和拦截。传统形式的防入侵检测技术应用过程可以分为信息采集、入侵信息判断、发出警告及控制几个阶段,该技术的应用有一定的局限性。智能防入侵技术具有规则产生式的专家系统、将神经网络作为技术基础、具有更为科学先进的数据挖掘技术,在这三种先进技术的共同应用和影响下,使得入侵威胁网络安全的有害信息得到了更为有效的检测,更好地控制了有害信息对计算机互联网造成的安全威胁。

2.2 人工智能在网络系统管理和网络评价方面的应用

计算机网络系统管理和网络评价环节的出现源于人工智能的应用,人工智能在计算机网络系统中的应用,可以运用科学使其技术具有人类的大脑思维特征,进而更为有效地帮助了广大计算机用户完成网络系统的分类、归纳及优化。计算机网络具有动态特性及顺便特点,在进行网络系统中的海量信息数据操作过程中,无法完全依赖人力去完成以及实现对计算机网络系统的优化和管理目标。人工智能则可更为高效和科学地完成网络系统的管理及评价,并且可将网络系统的自身运行状态及时向计算机用户反馈,进而提升网络系统管理效率和质量。Agent是人工智能的核心技术内容,指的是具有自主活动特征的软件或者软件主题,该技术涵盖了数据库、翻译推力器及相应的通信设备,其结构存在一定的复杂性。Agent技术应用于计算机用户进行实际问题的解决过程中,通常情况会使用一个Agent专门负责进行各种信息数据的接收,在与其他Agent之间通过沟通处理,进而在极短时间内实现指令任务的处理和完成。Agent还可以实施自定义式的个性化服务,Agent在接收到用户的指令信息之后,Agent系统则会对信息数据进行科学筛选,进而将较为精准的信息数据高效的传输给计算机用户,为计算机用户进行网络信息搜索节约了更多时间。Agent的科学应用还表现在可以帮助用户实现相应知识的深度挖掘,同时在系统中可以实现较完善的知识储备库从而为用户可以提供更先进的导航,并更具计算机用户的日常网络使用和操作特点,给计算机用户制定其所需要的个性化服务,以实现了计算机网络的智能化、便捷化、个性化发展。

3 人工智能在计算机网络技术中的应用趋势

3.1 人工神经网络发展趋势分析

人工智能是具有很大挑战特点的科学技术,从事该项技术工作的各环节工作人员不仅需要具备专业的计算机相关学科知识,还要具备心理学、语言学、生理学等多领域的知识。人工智能技术会随着人类社会的不断进步而不断发展,随着人们对于该技术要求的不断提升,为了更好地服务人类,其在未来的发展趋势中必将朝着更为科学和人性化方向发展。人工神经系统即是人工智能未来的发展趋势之一,其指的是丰富的处理单元,通过大量神经元的相互作用及联系使之成为一种神经网络。人工神经网络最主要的特点是具有更高的自学能力,可以实现自主解决多种多维非线性方面的问题,且在进行实际的解题过程和范围中可以突破传统的局限性,其不仅可以解决定量类型问题,对于定性类型的问题,人工神经网络同样可以实现有效解决。人工神经网络同时还具备和人类的大脑潜意识相仿的巨大信息储存容量,可以帮助各用户更好地解决各类问题,进而实现计算机互联网的有效管理,满足不同用户对各种信息数据的处理需求。

3.2 人工智能机器人具备学习功能

人工智能型机器人技术的开发和应用均是参照人类的大脑思维进行的,在人工智能的未来发展趋势中,实现机器人的自主学习将作为相关领域人员的研究方向。目前在我国科学技术水平支持下,人工智能具备了初级的学习功能,但是还无法与人类自身的学习能力相提并论,因此人工智能需要提升学习能力。人类的大脑神经系统要比人工智能技术中的结构复杂很多,人类可以进行感情、情绪的自由表达,而人工智能则只能通过脸部表情识别方式进行情绪的表现,使得人工智能有局限性。随着科技的进步,在未来的发展趋势中人工机器人的技术发展会越来越趋于人类大脑思维和方式。

3.3 人工智能识别功能领域的扩展

在我国目前的计算机行业中,电子设备已出现了多元化发展特点,计算机用户可选择的软件产品和种类也在日益增多,相关人员利用人类声音设计了不同的软件,还实现了人物图像及文字等的识别功能,但是缺乏外界感知功能。因此,在未来的发展趋势中人工智能会更加趋向于全面识别功能的开发和研究。

4 结束语

随着我国社会的发展和科学技术的不断进步,人工智能在计算机的网络技术中应用的范围和领域会越来越广泛。本文主要分析人工智能应用在计算机网络技术中的优势及有效应用,同时对于人工智能的未来发展趋势进行探析。通过分析与研究可以看到,人工智能在计算机网络技术中的应用目前主要体现在网络安全管理、网络系统管理及网络评价方面的应用,对于计算机网络技术起到了极大的促进作用。保障了计算机用户的信息安全,提升了管理效率和质量,提供了较为个性化的服务。还可看到人工智能在未来的发展趋势中会朝着人工神经网络、人工智能机器人具备自主学习功能及智能识别功能等领域发展,人工智能技术会随着社会的发展不断为人类提供更为科学、高效、个性化的服务。

参考文献

上一篇: 精神卫生法论文 下一篇: 课堂大数据分析
相关精选
相关期刊