催化学报杂志

发表咨询:400-808-1731

订阅咨询:400-808-1751

催化学报杂志 CSCD期刊

Chinese Journal of Catalysis

  • 21-1195/O6 国内刊号
  • 0253-9837 国际刊号
  • 1.52 影响因子
  • 1-3个月下单 审稿周期
催化学报是中国化学会;中国科学院大连化学物理研究所主办的一本学术期刊,主要刊载该领域内的原创性研究论文、综述和评论等。杂志于1980年创刊,目前已被万方收录(中)、CA 化学文摘(美)等知名数据库收录,是中国科学院主管的国家重点学术期刊之一。催化学报在学术界享有很高的声誉和影响力,该期刊发表的文章具有较高的学术水平和实践价值,为读者提供更多的实践案例和行业信息,得到了广大读者的广泛关注和引用。
栏目设置:研究快讯、研究论文、综述

催化学报 2018年第11期杂志 文档列表

催化学报杂志快讯
铜催化芳香醛和酮的氢硼化转化合成苄基硼酸酯类化合物1725-1729

摘要:有机硼化合物广泛应用于合成化学、药物化学以及材料化学等领域,开发新颖实用的方法合成有机硼化合物是重要的研究领域.在各种有机硼化合物中,苄基硼酸酯有着一些特有的性质,例如活性相对较高,可以有效地当作苄基化试剂使用.目前已有多种合成苄基硼酸酯的方法,主要集中在苄基格氏试剂或者锂试剂的硼化反应,但是该方法底物兼容性较差,而且苄基格氏试剂或者锂试剂的制备比较困难.随着催化反应的发展,过渡金属(如Pd,Cu,Ni,Fe)催化苄基卤代物的硼化反应及芳基卤代物和1,1-二硼类化合物的偶联反应能够有效地合成这类化合物.一级苄醇在钯或铜的催化作用下也可以转化为苄基硼酸酯.苄基C–H键的催化硼化是潜在的构建苄基硼酸酯的高原子经济性的方法,但目前其选择性和反应活性仍不高.在无金属催化的条件下,对甲苯磺酰腙类化合物与HBpin或B2pin2发生1,2-金属迁移是合成苄基硼酸酯的有效方法.到目前为止,虽然有很多种合成苄基硼酸酯的方法,但仍无法满足其合成需求,因此开发新型的方法合成苄基硼酸酯具有重要的意义.本文开发了一种新型的铜催化芳香醛/酮类化合物的脱氧氢硼化转化体系.使用廉价易得的铜作为催化剂,叔丁醇钠或者叔丁醇钾作为碱,醇质子作为氢源,在100 oC的条件下,芳香醛和芳香酮可直接转化成一级和二级苄基硼酸酯类化合物,该反应操作简单,反应体系可以兼容多种官能团,分离产率在21%–77%之间.反应机理方面,该转化有两种可能的过程,(1)反应体系中首先生成1,1-偕二硼化合物,该化合物在碱和EtOH的作用下发生脱硼质子解,最终转化成苄基单硼化合物;(2)醇质子转化成负氢物种,并与体系中的?-OBpin硼酸酯生成四配位硼,发生1,2-迁移后得到目标产物.为了验证上述两种反应途径的可行性,我们进行了一系列的控制试验.首先合�

光诱导双助催化剂在半导体表面的自发形成1730-1735

摘要:半导体光催化体系的助催化剂在光生电荷分离和表面催化反应过程中扮演着重要的角色.然而,在反应条件下助催化剂的化学态是否发生改变尚不清楚.本文以钽酸钠为模型光催化剂,系统地研究了镍基助催化剂在光催化分解水反应中的化学态.结果发现,在光诱导条件下半导体钽酸钠单晶表面自发形成了金属镍和氧化镍双助催化剂.首先用传统的水热法合成只暴露单一晶面的六面体钽酸钠半导体单晶光催化剂和暴露不等同晶面的二十六面体钽酸钠半导体单晶光催化剂.原位光沉积结果显示,暴露不同晶面的二十六面体钽酸钠半导体单晶光催化剂存在晶面间的电荷分离现象,进一步利用该现象可以确定不同催化活性位上镍基助催化剂的作用.XPS结果显示,半导体钽酸钠单晶表面的镍基助催化剂存在的不同价态.高分辨透射电镜结果表明,不同晶面上的镍基助催化剂具有不同的形貌,并且通过晶格衍射条纹的对比确认了不同镍基助催化剂物种的归属和作用.将表面浸渍氧化镍的二十六面体钽酸钠半导体光催化剂用于全分解水测试发现,反应开始阶段H2:O2比值小于2:1,说明部分光生电子被消耗掉,用于还原氧化镍,生成了金属镍.将表面还原的金属镍光催化剂进行全分解水测试发现,反应开始阶段H2:O2比值大于2:1,说明部分光生空穴被消耗掉,用于氧化金属镍,生成了氧化镍,金属镍和氧化镍最终在反应的过程中达到了平衡.金属镍担载在{001}晶面上,起着还原助催化剂的作用,参与质子还原,释放出H2;氧化镍担载在其他晶面上,扮演着氧化助催化剂,参与水的氧化,释放出O2;金属镍和氧化镍共同促进了光催化全分解水反应,使反应活性达到了最高.这种双助催化剂的自发形成现象不仅存在于二十六面体钽酸钠单晶半导体表面,在六面体钽酸钠单晶半导体表面也同样存在,是一个普适�

催化学报杂志论文
通过温和的镍腐蚀制备珊瑚状FeNi(OH)x/Ni作为一种一体化高效水分解电极1736-1745

摘要:高效稳定并可同时催化析氧反应(OER)和析氢反应(HER)的非贵金属催化剂对于实现廉价水分解电解槽的商业化十分重要.虽然众多研究表明FeNi(OH)x是一种极具潜力的催化剂,但是在基础研究与更有实用前景的电极之间仍有许多空白亟待填补.比如,基础研究多基于薄膜电极,其催化剂内部导电性的影响通常可以忽略.而基于实用化的电极则需要负载较厚的催化剂膜以获得更多的活性位,与此同时,其催化剂内部导电性的不利影响将会增大.此外,物质传递方面也会出现类似的情况.因此,一些在基础研究中显示出高本征活性的催化剂,在更加接近实际应用的体系下难以表现出预期的高活性.对于这一问题,目前鲜有相关的研究报道.基于上述分析,本文报道了一种经济且环保的方法,以制备珊瑚状的FeNi(OH)x/Ni催化剂.在碱性条件下,该催化剂具有同时催化OER和HER,从而实现全水分解的能力.在催化剂的制备过程中,具有高本征活性的FeNi(OH)x纳米片借助Fe(NO3)3对Ni温和的腐蚀过程,被原位负载到珊瑚状镍骨架上.这些纳米片与电沉积制备的珊瑚镍骨架以及3D泡沫镍基底一起构成了一体化的析气电极.这样的电极结构有助于暴露活性位、电解质快速传递和气体产物的迅速释放.此外,与珊瑚状金属镍骨架的复合也有利于减轻较厚的催化剂薄膜所带来的导电性降低的负面影响.在1.0molL^-1KOH溶液中,以FeNi(OH)x/Ni同时作为阳极和阴极而构建的对称电解槽表现出了优异的催化活性,只需要施加1.52V的槽压即获得10mAcm^-2的催化电流密度.其活性甚至优于当前最佳的由贵金属催化剂RuO2和Pt/C构建的非对称电解槽所表现出来的活性(10mAcm^-2的槽压为1.55V).本文提供了一种简便易行且十分可靠的制备更加实用、具有潜力且可负担的水分解装置的策略.

非负载纳米多孔钯催化喹啉及其衍生物的化学选择性氢化反应:H2分子异裂1746-1752

摘要:纳米多孔金属是近十年发展起来的一类具有三维通孔结构的新型功能材料,其由纳米尺度的细孔和韧带构成,具有极大的比表面积;它还是一种无毒无载体的宏观材料,并且易制备、易回收和重复利用,因此作为高效的非均相催化剂已逐渐引起人们的重视.1,2,3,4-四氢喹啉是许多医药、农药、染料和天然产物的重要骨架.通过喹啉及其衍生物的选择性加氢反应制备1,2,3,4-四氢喹啉,具有原子利用率高和原料易得等优点.在过去,已经开发了许多类型的均相和非均相催化体系,并成功地用于催化喹啉及其衍生物的选择性加氢反应.尽管非均相催化体系具有诸多优点,但仍存在H2压力(10–50atm)和反应温度(60–150°C)相对较高的缺点.因此,开发更加温和条件下的喹啉及其衍生物的选择性加氢反应具有重要意义.此外,在喹啉及其衍生物的加氢反应过程中,H2分子在非均相催化剂表面的裂解模式,即均裂还是异裂尚不清楚.因此,本文采用新型非均相催化剂纳米多孔钯,研究了喹啉及其衍生物的选择性加氢反应,在相对较低的H2压力(2–5atm)和温度(室温–50°C)下实现了目标反应,高收率、高选择性地得到1,2,3,4-四氢喹啉化合物.在最佳反应条件下,对底物的适用范围进行了考察.结果表明,各种含喹啉结构单元的化合物均能顺利发生反应,产物收率在62%–95%.而且该反应对甲基、甲氧基、羟基、酯基、醛基、酰胺基、卤素(F,Cl和Br)等官能团具有较好的兼容性.苯环上取代基的电子效应对反应有一定的影响,吸电子基有利于目标反应的进行.反应完成后,纳米多孔钯催化剂很容易回收,且循环使用多次后,仍未见催化活性降低.扫描电镜和透射电镜结果发现,循环使用后的纳米多孔钯催化剂结构没有发生明显改变,表明其结构稳定.浸出实验结果证明,没有钯原子浸出到反应液中,表明该纳米多孔钯催

非金属光敏剂石墨烯量子点与磷化镍耦合用于可见光光催化制氢1753-1761

摘要:利用光催化反应制取氢气是满足未来能源可持续利用的一个很有效的方法.然而,如何去开发和利用高效且稳定的非金属光催化剂用于产氢反应是目前所面临的一个巨大的挑战.最近,非金属纳米碳基材料由于其诸多优点而吸引了人们广泛的关注,比如价格低廉、环境友好和良好的稳定性等.另外,石墨烯量子点由于具有很好的水溶性、低毒性,良好的生物兼容性和很好的光学稳定性等优点而被当作是一种能够替代传统量子点的很有前途的材料.除此之外,石墨烯量子点的带隙还可以通过控制其颗粒大小和其表面所带的官能团来进行灵活调控.另一方面,金属磷化物(磷化镍、磷化钴等)已经被证实了是很好的水分解制氢的非贵金属助催化剂,它们可以加快光生电子和空穴的分离,从而提高光催化活性.本文利用非金属光敏剂石墨烯量子点与非贵金属助催化磷化镍进行耦合制备复合光催化剂,实现了在可见光照射下进行光催化制氢.在最优条件下,复合光催化剂的产氢速率为空白石墨烯量子点的94倍,甚至与在空白量子点上负载1.0wt%Pt的产氢速率相当.产氢速率的大幅度提升可能是由于在石墨烯的量子点和磷化镍之间形成了半导体–金属接触界面,从而更有效地促进了光生载流子的传输过程.石墨烯量子点本身有着很好的水溶性,从而利用机械搅拌的方法与磷化镍进行耦合,并在可见光下进行产氢反应.本文采用红外光谱(FTIR)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和荧光光谱(PL)等表征手段研究了空白量子点表面所带的官能团、尺寸大小和光学性能.采用TEM和PL等表征手段来研究复合光催化剂的形貌和产氢性能提高的原因.对于空白量子点,FTIR结果表明,其表面带有–OH等官能团;TEM结果表明,它的尺寸大小大概在3.6±0.5 nm;UV-Vis结果表明,其在可见光区域有着很强的光吸收;PL结�

HZSM-35分子筛酸性质对甲缩醛和乙酸甲酯羟醛缩合反应的影响1762-1769

摘要:丙烯酸及其酯是重要的化工原料,广泛应用于涂料、粘结剂、纤维等领域,目前工业上常采用丙烯两段氧化法进行制备,但该法以石油基原料丙烯为源头,采用V/Mo/Bi等金属催化剂,不符合可持续发展理念,且存在环境污染及氧气下产物易过度氧化等问题.如何高效、安全、大规模工业化制备丙烯酸及其酯是研究者追求的目标.以乙酸甲酯(Mac)和甲醛为原料,通过羟醛缩合一步制备丙烯酸及其酯是一条完全不同于丙烯氧化法的合成路径,原料均可由煤基甲醇得到,符合我国“富煤、贫油、少气”基本能源结构,且该方法碳原子利用率为100%,副产物仅为水,属于绿色环保合成路径.本文以甲缩醛(DMM)为甲醛源,创新性地采用固体硅铝分子筛为酸性催化剂,催化DMM和MAc发生羟醛缩合反应来制备丙烯酸.硅铝分子筛具有较高的活性,可高效地催化羟醛缩合反应,且具有很好的再生性能,即使催化剂寿命较短,也可采用流化床或移动床等反应器进行工业化,因此具有良好的工业化前景.硅铝分子筛中常含有Bronsted酸和Lewis酸,为试图说明羟醛缩合反应的真正活性位点,我们以羟醛缩合反应性能最佳的HZSM-35分子筛为研究目标.首先,利用红外研究HZSM-35分子筛的酸性质.发现分子筛中桥羟基提供Bronsted酸,外骨架铝物种提供Lewis酸.通过对桥羟基红外峰一阶求导,发现其对称性较差,表明Br?nsted酸在HZSM-35分子筛孔道中分布不均匀.利用红外分峰手段,得知约51%的Bronsted酸分布于八元环和六元环交叉所形成的笼(cage)中,约23%分布于十元环孔道,26%分布于八元环孔道中.同时,利用吡啶在分子筛HZSM-35不同温度下的吸附情况验证了这一分峰结果.其次,利用钠离子交换方法制备不同Bronsted酸浓度的ZSM-35分子筛,经吡啶红外表征得知,Bronsted酸浓度随钠离子交换程度增加而逐渐降低,而Lewis酸浓度并未改变;在羟醛缩�

一种高效稳定的低负载量的氯化-2-羟乙基三甲胺改性钌基催化剂用于乙炔氢氯化反应1770-1781

摘要:来自煤化工的乙炔氢氯化生产氯乙烯的工艺由于其经济优势成为我国生产PVC的主要路线.为了降低该工艺中汞触媒催化剂对环境的毒害,开发高效环保的乙炔氢氯化无汞催化剂刻不容缓.但已有研究表明,稳定性差和价格高昂成为制约乙炔氢氯化非汞催化剂工业化的瓶颈.由此,我们选用价格低廉、催化活性良好的RuCl3作为催化剂的前驱体,采用浸渍法制备了低负载量的氯化-2-羟乙基三甲胺改性RuCl3的催化剂,其中活性组分在ESI-MS中观测到是一种离子型配合物,其阴阳离子分别为RuCl4–和C5H14NO+.该催化剂在乙炔氢氯化反应中的测试结果表明,氯化-2-羟乙基三甲胺的加入可以显著提高催化活性和稳定性.通过透射电镜(TEM)和扫描-透射电镜(STEM)表征表明,该催化体系的活性组分具有良好的分散性,季铵盐[Me3NCH2CH2OH]Cl不仅与RuCl3形成配合物为活性组分,其过量时也提供了一个溶剂环境,能够稳定活性组分不团聚.透射电镜和X射线光电子能谱(XPS)结果共同表明,相比于单一负载的RuCl3催化剂,该催化体系中Ru物种基本保持在+3氧化态,不易在制备过程中被氧化或在反应过程中被还原性气体乙炔还原为金属颗粒,表现出了良好的稳定性.程序升温脱附(TPD)结果表明,氯化-2-羟乙基三甲胺这一季铵盐的加入能够大幅度提升体系对氯化氢的吸附,降低体系对乙炔和产物氯乙烯的吸附,从而促进乙炔氢氯化反应的进行,减少体系吸附乙炔或氯乙烯过强导致的积炭现象.另一方面,本工作中采用密度泛函理论方法研究了乙炔氢氯化非汞催化剂的性质、催化剂与反应物的吸附和相互作用模式.其中吸附能的计算结果表明,活性组分和季铵盐都能够提升对氯化氢的吸附,季铵盐还能够抑制体系对乙炔的吸附,计算结果与TPD的结果基本一致.对反应物和催化剂之间的相互作用进行了考察,发现该体系对氯

底物与条件控制苯胺与丙烯醛/烯酮的化学选择性偶联反应1782-1791

摘要:金属催化碳氢键活化已经成为制备高附加值有机化合物的一类高效方法,由于碳氢键广泛存在,所以对它们进行化学、区域、立体选择性的活化作为一大挑战已经被人们日益所关注,然而氧化还原选择性控制的研究十分少见.通常而言,有机氧化还原反应定义为得失氢氧原子,例如消除氢负离子为氧化反应,而失去一个质子则为中性反应.在已有的研究中单独的氧化、还原反应已经被广泛研究,而且被大量用于医药合成、精细化工品的制备以及各类先进材料的生成.但是在同一反应体系下同时调控三种氧化态的研究目前未见报道,因此发展这类选择性控制的反应十分重要.我们此前已经实现了Rh(III)/Ir(III)催化苯胺和烯酮还原偶联合成四氢喹啉和高烯丙基苯胺两种产物,同时也能得到中性的1,2-二氢喹啉产物.在此工作的基础上,我们希望能够进一步实现相同反应组分的氧化偶联.为此,我们仔细分析取代的苯胺与烯酮的可能反应路径,发现可能的关键物种G—含有Rh(III)的六元杂环中间体有望实现这类氧化过程,当用丙烯醛做底物时,物种G有可能实现β-氢消除得到氧化的二氢喹啉酮和Cp*RhXH,通常Cp*RhXH很容易发生自身的还原消除得到Cp*Rh(I)使反应终止,但是,丙烯醛的存在有可能重新活化Cp*RhXH使得催化循环一直进行下去.另一种情况是中间体G发生质子解然后脱水得到亚胺物种,亚胺很容易被亲核试剂进攻得到中性的氮杂缩醛类产物.当然,外加银盐氧化剂还有可能得到另一种氧化型的喹啉盐.基于这种思路,我们发展了Rh(III)-催化碳氢活化N-取代的苯胺与丙烯醛/烯酮的选择性偶联反应,反应可以化学选择性专一地制备三类不同的杂环化合物.当氮-吡啶基苯胺与丙烯醛反应时,反应类型为氧化过程,经历了转移氢化的过程,其中烯醛为主要的氢受体,得到二氢喹啉酮产物;如果定位�

离子刻蚀法制备具有高效催化性能的m-Bi2O4/BiOCl p-n异质结催化剂1792-1803

摘要:光催化技术作为一种绿色的环境修复方法而备受关注,它直接利用太阳光作为能源,可有效地降解有机污染物.铋系化合物具有化学稳定性强、抑制光腐蚀、无毒和来源广泛等优点,被认为是一种环境友好的光催化剂,广泛用于降解染料、苯酚和其他有机污染物.BiOCl具有独特的内部结构,可形成内电场促进电子和空穴的移动,抑制其复合.但是BiOCl本身带隙能过大,只能被紫外光激发,对光的利用率较低,限制了其在环境治理中的应用.近两年来发现,m-Bi2O4带隙能小,可吸收大波长的可见光,催化性能好.为充分发挥m-Bi2O4的优异性质,改善BiOCl的性能,本文将BiOCl与m-Bi2O4复合制得新型催化剂,降低催化剂的带隙能,增强对光的吸收,提高量子效率,促进光生载流子的分离,抑制电子-空穴复合,从而提高催化剂性能,加速降解反应进程.本文通过离子刻蚀法制备具有p-n异质结的m-Bi2O4/BiOCl复合催化剂,通过调节HCl的加入量制得不同比例的催化剂,并考察了其在可见光下催化降解MO(甲基橙)的性能.结果表明,m-Bi2O4/BiOCl复合催化剂在可见光下表现出优异的光催化降解MO和四环素的性能,反应10内min可降解95%的MO,反应150 min内四环素的降解率为85.5%;该复合催化剂对MO和四环素的光降解效率分别是纯BiOCl的52.3和4.9倍.活性自由基捕获实验表明,空穴在光催化降解过程中起最主要的作用,其次是超氧自由基,羟基自由基对降解反应也起到一定的作用.采用XRD,SEM,EDS,TEM,SAED,FT-IR,Raman,XPS,BET,UV-vis和光电流等表征方法分析了催化剂的结构、形貌、化学组成、元素价态、孔结构、带隙能、光学性质和载流子复合效率.结果表明,与BiOCl的斜四方体相比,m-Bi2O4/BiOCl复合催化剂呈现纳米片状结构,氯离子进入晶格的内部,颜色也由BiOCl原来的深褐色变为黄色.m-Bi2O4/BiOCl为介孔结构,比表面积为112.90 m2/g,其吸收波长红移

WO3改性CeO2-TiO2催化剂的低温NH3-NO/NO2 SCR活性和机理研究1804-1813

摘要:在铈钛基NH3-SCR催化材料中,改性元素对催化材料的酸性位和氧化还原性能的影响较大。本文采用过量浸渍法分别制备了CeO2-TiO2(CeTi)和CeO2/WO3-TiO2(CeWTi)催化剂,研究了CeWTi催化材料结构、酸性位及氧化还原性能对NH3-NO/NO2 SCR反应性能的影响.结果发现,CeTi和CeWTi样品均有较优异的NH3-NO/NO2 SCR催化性能,后者略高.WO3的加入增加了催化材料的表面酸性,对其氧化还原性能影响不大.通过对反应中间物种NH4NO3的研究,发现NH4NO3的分解主要与氧化还原性能相关,而NO还原NH4NO3的反应需要氧化还原能力和酸性位共同作用,即在氧化还原性能差异不大的条件下,酸性对该反应起到重要作用.而该反应也是NH3-NO/NO2 SCR的限速步骤,这是CeWTi催化材料活性高于CeTi催化材料的原因.同时,为了获得NH3-NO/NO2 SCR反应的高活性,NO2:NO比例宜为1:1.然而现实情况中,预氧化催化材料的氧化活性、NOx浓度、温度等变量使得准确控制NO2的比例较难,因此,深入了解NO2浓度对NH3–NO/NO2 SCR反应的影响至关重要.本文探讨NO2:NO的比例、O2浓度等对NH3-NO/NO2 SCR反应性能的影响;并研究了不同NO2含量条件下NH3-NO/NO2 SCR反应网络.通过分析CeWTi材料上NH3-NO/NO2 SCR反应网络可知,当NO与NO2比例为1:1时,NH3-SCR催化活性最高,并以快速SCR形式进行;当NO与NO2比例为1:1消耗完全之后,剩余的NO或NO2各自独立以标准或慢速SCR进行,不影响其本来的反应活性.催化材料的标准SCR、快速SCR和慢速SCR均取决于材料表面酸度和氧化还原性能,但快速SCR和慢速SCR对材料这两方面性能的要求相对较低.同时O2并不参与快速和慢速SCR,而NO2可以取代O2作为SCR反应中主要的氧化剂,氧化Ce4+为Ce3+,甚至比O2和NO再氧化活性位的能力更强,保持催化材料的高催化活性.低温条件时,慢速SCR和快速SCR反应均在材料表面生成硝酸铵中间物种,但由于慢速SCR气氛中缺乏NO将硝酸�

纳米钒铬复合氧化物的溶剂热合成、表征及催化2,6-二氯甲苯氨氧化反应1814-1820

摘要:甲基芳烃气相氨氧化反应制备对应的芳香腈被认为是丙烯氨氧化制备丙烯腈之后化工领域又一重大进展,芳香腈是重要的精细化学品,广泛应用于医药、农药、颜料、染料、橡胶、光电材料等领域.其中2,6-二氯甲苯氨氧化反应制备2,6-二氯苯腈是特别重要的反应,2,6-二氯苯腈工业上可用于制备高效除草剂、杀菌剂及各种特种工程塑料;然而相较于其它的甲基芳烃,2,6-二氯甲苯由于甲基邻位有两个较大位阻且较强吸电子的氯原子影响,甲基活性较低,较难发生氨氧化反应,原料转化率和产品收率均较低.本课题组一直致力于发展高活性和选择性的氨氧化催化剂以及有效的策略实现甲基芳烃高效转化为芳香腈,我们曾以硅胶负载的钒磷氧化物(VPO/SiO2)和钒铬氧化物(VCrO/SiO2)为催化剂,成功实现了2,6-二氯甲苯氨氧化反应制备2,6-二氯苯腈.钒铬复合氧化物(VCrO)具有广泛的应用,可用于多相催化、气体传感、能量储存等领域.VCrO通常通过高温固相反应制备,然而一般得到的是混合相,产品形态和颗粒大小也不能很好控制;当用于氧化或氨氧化反应时,需要较高的反应温度,原料也容易发生过度氧化,导致积碳及活性降低.我们以V2O5和CrO3为原料,在醇或者醇水溶液中于180°C进行溶剂热反应制备了无定形的VCrO前驱体,然后将前驱体在不同温度下氮气气氛中煅烧,产品通过粉末X射线衍射、透射电镜和X射线光电子能谱等进行表征.当以甲醇或甲醇水溶液为溶剂热反应介质,并且前驱体700°C进行煅烧后,产品为纯的正交晶系CrVO4纳米晶相;当以甲醇为溶剂时,CrVO4晶相的尺寸大约为500 nm;而改为甲醇水溶液为溶剂时,产品尺寸急剧减小到50 nm以下,而且通过改变甲醇和水的体积比分别为10:1,5:1,1:1和1:5时,CrVO4纳米晶相的尺寸从50 nm逐渐减小到30,20和10 nm,能够进行有效调控.据我们所知,这是首次合�

通过SAPO-34分子筛笼中引入金属物种提升甲醇制烯烃反应中乙烯选择性1821-1831

摘要:低碳烯烃(乙烯、丙烯)是化学工业极其重要的基本原料.甲醇制烯烃(MTO)反应是重要的烯烃生产石油替代路线.其中,磷酸硅铝类SAPO-34分子筛在MTO反应中表现出优异的低碳烯烃选择性.与丙烯相比,乙烯具有更高的经济附加值,因此提升MTO反应中乙烯的选择性有着重要的意义.本文采用传统离子交换法(CIE)、模板辅助离子引入法(TII)和醇相离子交换法(AIE)对SAPO-34分子筛进行金属Zn、Cu改性,利用多种表征手段对金属Zn、Cu改性SAPO-34分子筛的物理结构、化学组成、金属物种状态与分布、酸性及扩散性质等进行表征.首先,对金属Zn、Cu改性SAPO-34分子筛的物理结构和化学组成进行分析.X射线衍射表明,相比AIE法,CIE法和TII法改性基本保持SAPO-34分子筛的结晶度.X射线荧光分析表明,相比Co、Ni,金属Zn、Cu更易引入SAPO-34分子筛.N2物理吸附-脱附表明,CIE法改性能够保持SAPO-34分子筛的BET比表面积和微孔孔容.其次,考察了金属Zn、Cu改性SAPO-34分子筛中金属物种的状态.氢气-程序升温还原(H2-TPR)和X射线光电子能谱(XPS)结果表明,Zn物种主要以孤立态的Zn2+阳离子形式存在.H2-TPR、XPS、紫外-可见光谱和电子顺磁共振谱结果表明,Cu物种主要以孤立态的Cu2+阳离子以及部分CuO形式存在.继而对金属Zn、Cu改性SAPO-34分子筛中金属物种的分布进行表征.XPS表明,Zn阳离子改性的SAPO-34表层富硅、富Zn,呈类核壳结构;XPS和扫描式电镜-能量色散X射线光谱结果表明,Cu物种在Cu改性SAPO-34分子筛中均匀分布.进一步研究了金属Zn、Cu改性SAPO-34分子筛中酸性的变化.氨气-程序升温脱附和核磁共振氢谱结果表明,Zn、Cu改性SAPO-34酸性位点的酸量降低.最后,对金属Zn、Cu改性SAPO-34分子筛的扩散性质进行分析.智能重量分析表明,Zn、Cu阳离子的引入降低探针分子(乙烷、丙烷)的扩散系数,推断Zn、Cu阳离子的引入增加对MTO反应�

水滑石与海泡石复合材料对有机染料的光催化降解性能1832-1841

摘要:由于ZnCr-LDH纳米粒子具有良好的光催化性能,但极易团聚,在一定程度上制约了它在光催化领域的应用.将水滑石制成核-壳复合材料可以避免粒子团聚,改善其单分散性和稳定性,从而提高光催化活性.本文设计了一种水滑石/海泡石(Sep@LDH)纳米复合材料作为光催化剂,以甲基橙(MO)和亚甲基蓝(MB)混合溶液模拟有机染料废水,进行光催化反应.通过XRD,SEM,UV-Vis DRS,PL,TG-DTG和BET/BJH,证明了水滑石成功的生长在海泡石的表面,通过光催化实验详细研究了Sep@LDH纳米复合材料的光催化性能及光降解反应机理.采用共沉淀制备了不同Zn/Cr摩尔比的水滑石纳米材料,对水滑石进行优化,结合表征分析,发现摩尔比为1的ZnCr-LDH其结晶度、层间规整度高,禁带宽度最窄(2.30 eV)和光致发光性能最佳.因而用作后续复合材料的制备.另一方面,我们以酸活化的海泡石(Sep)为载体,采用原位生长法成功制备了一种新型的水滑石/海泡石(Sep@LDH)光催化剂,研究了海泡石的添加量对复合材料性能的影响.结果表明,Sep含量对复合材料形貌、粒径大小、结构以及光学性质影响较大.其中,样品Sep4@LDH(海泡石添加量为4 g),比表面积最大,因而光催化效率最高.降解动力学结果表明,染料的光降解过程遵循准一级动力学模型.我们通过对活性物种(·OH,h+,·O2^-)的考察,研究了光催化降解机理.结果表明,·OH在光降解过程中起着至关重要的作用.Sep4@LDH复合材料循环使用5次后,MO和MB的光降解率依然分别可以达到86.2%和84.9%,表现出较高的稳定性.

一步法制备铁氧化物/氮改性氧化石墨/碳纳米管异质结及其用于催化活化过一硫酸氢钾降解亚甲基蓝模型染料1842-1853

摘要:随着较差的生物相容性和更高毒性有机染料的应用,如酚类化合物和抗生素,水污染和食品污染变得极其严重.这不仅危害人类健康,而且严重污染自然环境.过硫酸盐去污技术利用自由基活化降解过程,成为处理一系列污染物非常有效的方法;然而设计具有多功能性的高性能催化剂仍然面临着巨大的挑战.因此,本文借鉴铁基材料、氮改性石墨和碳纳米管独特的物化性质,以尿素、铁盐、氧化石墨、碳纳米管为原材料,通过一步水热法成功制备了三维多功能铁氧化物/氮改性氧化石墨/碳纳米管异质结,用作活化过一硫酸氢钾复合盐以降解有机模型污染物亚甲基甲蓝(MB),研究了高级氧化法(AOPs)作用机理和优化反应条件.XRD、红外光谱、SEM和XPS结果表明,铁氧化物通过物理静电作用力和化学键结合力已经被牢牢固定在了氮修饰的氧化石墨结构框架内.当加入了碳纳米管之后,它会与石墨形成类似于互穿聚合物网络的结构,从而具有三维材料的优点,且提升电子转移电导率,使得催化剂的结构和性能有了很大的改善.此外,优化了降解系统、PMS负载量、初始有机污染物浓度和催化剂用量等因素.结果表明,处于催化剂/PMS系统时,亚甲基蓝可以在12 min之内有效地完全降解,可归结于碳、氮以及主要活性物质铁氧化物之间的协同作用.基于数据拟合分析,污染物氧化降解系统与拟一阶动力学相符合,其速率常数约为0.33 min^-1.淬灭实验证明,硫酸根自由基和羟基自由基是主要的反应活性物种.这种同时富含铁/氮分级的多孔碳骨架异质结物质不仅可用作过渡金属催化剂,而且为制备其他异质结提供参考,以用于超级电容器、储能材料、电催化剂等领域。

基于两性离子型季铵盐-KI的温度控制自分离离子液体(IL)催化体系用于二氧化碳固定反应1854-1860

摘要:随着在世界各国工业化进程不断加快,人类对煤、石油、天然气等化石燃料的需求越来越大,既加速了能源短缺,又排放了大量CO2.CO2又成为分布最广、价格便宜和储量丰富的碳资源.人类除了努力做到CO2减排,又可将其转化为能源、材料和各种化工产品.CO2与环氧化合物发生偶联反应生成环碳酸酯,具有原子经济性,符合绿色化学的观点,是最有前景的方法之一.CO2可以与三元环氧化合物发生偶联反应生成五元环状碳酸酯,它是当今合成环碳酸酯比较成熟的方法.已经被设计合成并应用的高效催化体系有离子液体催化剂、金属盐或氧化物催化剂、有机催化剂、希夫碱金属配合物催化剂以及大环金属配合物催化剂等等,但最有效的催化剂还是均相催化剂,其最大的缺点在于催化剂和产物分离困难.既有均相催化剂高的催化活性,又能像多相催化剂易于分离,是人们设计新催化剂的目标.本文设计合成了一系列含有不同烷基链长度的两性离子型季铵盐(ZTQAs),可以与KI协同催化CO2与环氧化合物偶联反应.随着烷基链的增长,ZTQAs在碳酸丙烯酯中表现出温度调控的自分离特性.通过X射线光电子能谱和量子化学计算证实,ZTQAs与KI之间存在明显的相互作用,从而增强了碘离子的亲核能力.当反应条件为125℃,CO2压力1.5 MPa以及1 mol%催化剂用量下,DTPS/KI催化剂取得了良好的收率(95.1%).并且该催化剂可以从催化系统中自发的析出,因而既表现出均相催化剂的高活性,又可以像非均相催化剂那样循环使用.该催化剂催化各种环氧化合物与CO2偶联反应中均显示出良好的催化性能.