催化学报杂志社
分享到:

催化学报杂志

《催化学报》在全国影响力巨大,创刊于1980年,公开发行的月刊杂志。创刊以来,办刊质量和水平不断提高,主要栏目设置有:研究快讯、研究论文、综述等。
  • 主管单位:中国科学院
  • 主办单位:中国化学会;中国科学院大连化学物理研究所
  • 国际刊号:0253-9837
  • 国内刊号:21-1195/O6
  • 出版地方:辽宁
  • 邮发代号:8-93
  • 创刊时间:1980
  • 发行周期:月刊
  • 期刊开本:A4
  • 复合影响因子:1.52
  • 综合影响因子:1.788
期刊级别: CSCD期刊统计源期刊
服务介绍

催化学报 2015年第08期杂志 文档列表

催化学报杂志综述

Metal nanoparticles immobilized on ion-exchange resins:A versatile and effective catalyst platform for sustainable chemistry

1157-1169
催化学报杂志快讯

含有手性BINAP基团的共轭微孔聚合材料应用于喹啉高效不对称氢化反应

摘要:喹啉不对称氢化反应是不对称氢化研究的重点之一.其氢化产物四氢喹啉不仅是重要的有机合成中间体,同时也是自然界中生物碱的结构单元和生物活性化合物.周永贵研究组首次报道了手性(R)-MeO-Biphep/Ir体系成功用于喹啉的不对称催化,取得了非常好的反应结果.随后他们对喹啉底物进行了拓展,包括拥有特殊取代基的喹啉衍生物,均取得了良好的反应结果.后来多个研究组对该反应进行了深入研究并开发出了多个不同手性膦配体的Ir催化体系.虽然喹啉不对称氢化反应取得了很大的发展,但是该均相反应体系只能在高的反应催化剂用量下才能实现好的结果.进一步研究发现手性配体与金属Ir络合后形成反应活性物种,但后者可发生二聚或三聚,生成的产物是不具有催化活性的,从而导致了反应体系需要高的催化剂的用量.为此人们做了大量研究.范青华研究组通过对BINAP基团上嫁接大空间位阻的枝状分子合成了一系列新的手性BINAP配体,在与Ir络合后,表现出远高于均相催化剂的反应活性,且可循环利用.在该体系中,大位阻的枝状分子起到了阻隔活性物种二聚、三聚的作用,因而提高了反应活性.后来周永贵研究组也尝试通过改变有机配体的方法来实现高的反应活性.他们选择改变手性双膦配体上P原子所连接有机配体的空间位阻来实现对活性物种多聚的控制.实验同样取得了很好的反应效果.对于均相反应体系,我们只能通过这种改变有机配体空间位阻的方式来降低活性物种多聚的可能性,那么如何彻底阻止这种多聚呢?非均相体系给我们提供了很好的研究思路,但如何将非均相体系引入到喹啉不对称氢化反应体系当中成为了难点.共轭微孔聚合物(CMPs)的发展使得手性催化体系很容易从均相转变到非均相.这种材料具有较高的比表面积和固定的开放孔道结构,可
1170-1174
催化学报杂志论文

Rh(Ⅲ)催化的N-甲氧基苯甲酰胺系列物选择性C-H氰基化反应

摘要:采用了最近热门的Rh(III)催化C-H键活化方法,以N-甲氧基苯甲酰胺系列物为反应底物,N-氰基-N-苯基对甲苯磺酰胺(NCTS)为氰基化试剂,高效合成了含氰基官能团产物.结果表明,该反应在碳酸银存在下,使用二氧六环作为反应溶剂,于80℃反应8 h生成的邻位氰基取代的N-甲氧基苯甲酰胺的产率较高.进一步研究表明,该反应具有好的区域选择性和底物/官能团适应性.一系列机理实验研究表明,该反应可能采用了一个内部的亲电取代机制及使用了C-H键切割步骤作为关键限速步骤.考虑到该反应产物包含有价值的结构单元-N-甲氧基甲酰胺和氰基取代基,因而有望用于现代有机合成中.
1175-1182

平板结构高效钙钛矿太阳能电池的旋涂溶液溶剂工程

摘要:自2009年首次应用于太阳能电池中以来,有机铅卤化物钙钛矿材料得到了极大关注.据文献报道,有机铅卤化物钙钛矿材料在不同结构的太阳能电池中都得到了应用,其中与有机太阳能电池类似的平板结构钙钛矿具有结构简单、制备容易等优点,非常适合用于柔性电池和多节电池等各种应用.在平板结构的太阳能电池中,制备高质量的钙钛矿薄膜至关重要.真空热蒸镀法虽然可以制备厚度均匀的钙钛矿薄膜,获得高的器件性能,但是设备成本较高,不利于大规模生产.而在溶液法中,早期的一步旋涂法和两步法由于没有多孔金属氧化物的支撑,很难制备均匀的钙钛矿平板薄膜;而气相辅助的两步法虽然制备的薄膜比较均匀,但反应时间却比较长.程一兵研究组采用在旋涂N,N-二甲基甲酰胺(DMF)溶液时滴加氯苯使钙钛矿快速析出结晶的方法,制备了高质量的均匀的CH3NH3PbI3薄膜.Seok研究组采用1,4-丁内酯(GBL)和二甲基亚砜(DMSO)的混和溶剂,在旋涂时滴加甲苯的方法,在多孔二氧化钛上也制得了均匀的CH3NH3Pb I3薄膜,取得了很高转化效率(16.7%),但缺少对不同溶剂比例的细致研究,另外,也没有对平板结构电池性能进行研究.本文采用DMF-DMSO和GBL-DMSO作为混合溶剂在二氧化钛致密层上旋涂制备了平板结构的钙钛矿薄膜,并且对混合溶剂的比例对器件性能的影响进行了详细的考察和优化.当纯DMF或纯GBL作为旋涂溶剂时,得到的CH3NH3PbI3钙钛矿薄膜含有大量不连续的晶粒,表面的覆盖度很差,对入射光的吸收远弱于连续均匀的薄膜.而且XRD结果表明,纯DMF或纯GBL作为旋涂溶剂的薄膜残留有前驱体的杂质,对器件性能非常不利.而采用DMSO作为旋涂溶剂时,制得的薄膜表面则比较均匀,几乎达到100%的覆盖.这主要是由于在旋涂溶液中形成了PbI2-CH3NH3I-DMSO的中间相,这样可以避免纯DMF或纯GBL溶剂�
1183-1190

纳米尺度NiLa2O4尖晶石催化NaBH4还原亚胺制仲胺

摘要:由溶胶-凝胶法制得的Ni-La化合物经热分解制备了纳米尺度NiLa2O4尖晶石,在750℃焙烧后形成了结晶良好的尖晶石结构.采用差热分析、X射线衍射、透射电镜、扫描电镜和粒度分布分析等手段表征了该尖晶石的物理化学性质.结果表明,该纳米颗粒有规则的外形和确定的晶面,由平均粒径为40 nm的规整半球晶粒组成.精修的晶胞参数a=3.861205A和c=12.6793A.在NaBH4选择还原亚胺制相应仲胺的反应中,该新型纳米NiLa2O4尖晶石可用作高效多相催化剂,得到了较高的产物产率.所有反应可在室温和相对较短的时间内完成.在优化的反应条件下,均可得到带有不同芳基的,包括带有吸电子和供电子基团的仲胺.该催化剂回收简便,重复使用4次,其催化活性未见明显下降.
1191-1196

热解条件对氮杂有序介孔炭材料电催化性能的影响

摘要:氧还原反应是燃料电池及金属空气电池中极其重要的电化学反应之一,贵金属铂基催化剂被认为是最有效的氧还原反应电催化剂.然而,贵金属铂的资源稀缺以及高成本问题阻碍了相关技术的大规模应用,探索发展廉价高效的贵金属替代型催化剂是推动燃料电池发展的根本解决方案.近年来,人们在非贵金属催化剂开发方面取得了显著进展,其中新型纳米结构掺杂炭材料研究尤为活跃.氮杂有序介孔炭材料由于其高比表面积和独特的孔结构,在燃料电池技术上具有广泛的应用前景.在氮杂有序介孔炭材料的制备过程中,热解条件对炭材料组成、结构及电催化性能有着重要影响.然而,目前尚未见对氮杂炭材料制备过程中热解条件的影响进行系统研究.本文采用我们发展的蒸汽化-毛细管冷凝法,以SBA-15为硬模板浸渍前驱体吡咯,制备出具有高比表面积和独特孔结构的氮杂有序介孔炭材料,系统研究了热解条件(包括热解温度、热解时间和升温速率)对炭材料组成、结构及电催化性能的影响,采用N2吸附-脱附等温线、X射线光电子能谱(XPS)及Raman光谱等方法考察了氮杂有序介孔炭材料的结构和组成,采用循环伏安法与旋转环盘电极研究了其电化学行为与氧还原反应电催化活性及选择性.N2吸附-脱附等温线显示,氮杂炭材料对应IV型吸附-脱附等温线,孔径主要分布在2–10nm,表明所制材料具有介孔结构.随着热处理温度升高,氮杂有序介孔炭材料比表面积先增加而后降低,热处理时间的延长有利于比表面积增大,但升温速率对所制炭材料比表面积没有明显影响,当升温速率为30℃/min,900℃焙烧3h时,氮杂有序介孔炭材料的比表面积达到最大值888m2/g.XPS测试结果表明,随着热处理温度升高,氮杂有序介孔炭材料中含氮基团的分解进一步加深,使N含量逐渐降低.延长热处理时间亦然,而�
1197-1204

MCM-41分子筛负载亚硒核过氧钨酸盐催化剂催化二苯并噻吩氧化脱硫

摘要:石油在作为燃料使用过程中常常产生各种污染,特别是油品中的含硫化合物不仅会降低油品品质,而且燃烧后产生的硫氧化物可污染大气,形成酸雨,危害人类健康.因此,油品深度脱硫是一项十分重要而紧迫的工作.目前油品脱硫方法有很多种,主要分为加氢脱硫与非加氢脱硫.加氢脱硫反应条件苛刻,脱硫效率低,对设备要求高,因而非加氢脱硫正在被广泛研究.其中氧化脱硫反应条件温和,脱硫效率高,对设备要求不高,有望实现规模化应用.在氧化脱硫反应中,催化剂是研究重点,尤其是催化剂效率及可回收能力.本课题组合成的亚硒核过氧钨酸盐是一种具有高选择性和高催化活性的催化剂,但它在反应后无法实现回收再利用,从而限制了其广泛应用.为了提高该催化剂的可回收能力,本文尝试制备负载型亚硒核过氧钨酸盐用于氧化脱硫反应中,考察其催化效率及可回收能力.分子筛具有孔结构,比表面积大且较为稳定,是理想的催化剂载体.本文采用浸渍法制备了MCM-41分子筛负载的亚硒核过氧钨酸盐,为了提高负载能力,减少催化剂溶脱,还制备了MCM-41-NH2分子筛负载的亚硒核过氧钨酸盐,并运用红外光谱、X射线衍射、N2吸附-脱附和透射电镜对它们进行了表征.结果显示,亚硒核过氧钨酸盐在MCM-41和MCM-41-NH2分子筛内分散均匀,表明负载成功.将负载型亚硒核过氧钨酸盐催化剂用于模拟油样二苯并噻吩(DBT)氧化脱硫实验,并用气相-火焰光度检测仪跟踪实验.结果表明,负载型和非负载型催化剂均具有较高的催化性能.模拟油样在负载型催化剂作用下氧化脱硫反应2 h后,DBT转化率达98.7%,实现了深度脱硫.此外,还优化了反应时间、反应温度及氧化剂和催化剂用量.与其它催化剂相比,在相似脱硫效率情况下,负载型催化剂的催化效率更高,反应条件更加温和,催化剂用量更少,因而更加�
1205-1213

碳催化剂用于异丁烷直接脱氢制异丁烯

摘要:异丁烯用途广泛,被认为是除乙烯和丙烯外最重要的基础化工原料.异丁烯的来源主要是石油裂化过程中产生的碳四馏分,但随着对其需求量的逐年增加,分离法已逐渐无法满足,因此异丁烷直接脱氢工艺逐渐受到工业界和学术界的重视.铬系和铂系催化剂是两类传统工业催化体系,但铬对环境污染严重,铂作为贵金属成本较高,而且现有工艺大多存在催化剂稳定性较差需要反复再生的问题.近年来碳材料用于烷烃氧化脱氢反应的研究较多,并表现出较高的活性和稳定性,甚至有研究组提出金属催化剂在反应中快速生成的活性积碳(active coke)可能是真正的催化活性中心.但氧化脱氢反应不同于直接脱氢,需在反应中加入氧气,这在实际生产中会带来一系列问题:考虑到烷烃的爆炸极限,实际应用时反应气必须稀释,这不利于产物的收集;而且氧气会导致反应物过度氧化产生CO和CO2等副产物,也限制了氧化脱氢工艺在工业上的应用和发展.我们研究组将椰壳碳、煤质碳和碳纳米管等碳材料作为催化剂用于催化异丁烷直接脱氢反应,发现碳催化剂表现出较高的催化活性:在625℃,椰壳碳上异丁烷转化率和异丁烯选择性分别为70%和78%,连续反应3d后仍能维持34%的转化率,且选择性基本不变.与铬基催化剂相比,碳催化剂在稳定性方面表现出更大优势.我们进一步采用N2吸脱附、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)和场发射扫描电子显微镜(FE-SEM)等手段对反应前后的碳催化剂进行了详细表征.N2吸脱附结果表明,椰壳碳比表面积高达1190.2 m^2/g,这可能是其具有较高催化活性的原因;而结合催化剂活性数据,对比反应前后椰壳碳催化剂比表面积和异丁烷转化率可知,两者呈现近乎线性的相关性,进一步证实比表面积大小对碳催化剂催化活性有重要影响.XPS谱图证明椰壳
1214-1222

MnO2纳米粒子固载纤维素酶用于高效水解农业废弃物制备生物乙醇

摘要:纤维素酶是一种有效的纤维质类物质水解催化剂,工业应用时可通过固定化纤维素酶来降低其成本.本文将烟曲霉原变种JCF产生的纤维素酶固定在MnO2纳米颗粒上.MnO2可提高纤维素酶的活性,并充当一个更好的载体.采用扫描电镜表征了所制MnO2纳米粒子及其负载纤维素酶的表面性质,以傅里叶变换红外光谱分析了固定在MnO2纳米粒子上纤维素酶的官能团性质.纤维素酶在MnO2纳米粒子上最大的固定化效率为75%.考察了固定化纤维素酶的活性、操作pH值、温度、热稳定性和重复使用性等性质.结果表明,所制固定化酶的稳定性比游离酶更高.固定于MnO2纳米粒子上的纤维素酶可用于纤维质类物质的水解反应,且能在较宽的温度和pH值范围内使用.表征结果证实了该催化剂具有非常高的催化纤维素类物质水解的活性.
1223-1229

聚合物微球固载的催化剂TEMPO在分子氧氧化环己醇过程中的催化特性

摘要:醇氧化为羰基化合物是有机合成工业中最重要的化学转变之一,在实验室研究和精细化工生产中都占有非常重要的地位.使用传统的化学计量强氧化剂(如CrO3,KMnO4,MnO2等),不但成本高及反应条件苛刻,还会产生大量污染环境的废弃物.因此,需要大力发展高效、绿色化的醇转变为羰基化合物的氧化途径.以2,2,6,6-四甲基哌啶氮氧自由基(TEMPO)为催化剂,分子氧为氧化剂,可在温和条件下绿色化地实现醇的氧化转变.该催化氧化作用的实质是TEMPO经过单电子氧化过程转化为相应的氮羰基阳离子,该阳离子是一个具有强氧化性的氧化剂,可将伯醇和仲醇分别快速地、高转化率、高选择性地氧化为对应的醛或酮.然而,目前使用的TEMPO大多为均相催化剂,虽然表现出良好的催化活性和选择性,但反应后难以分离回收,不能再循环使用,严重制约着这一催化体系的发展.本文将TEMPO化学键合在聚合物载体上,在非均相催化剂的作用下,以期实现环已醇的分子氧氧化,将其转变为环已酮.首先采用悬浮聚合法,制备了交联聚甲基丙烯酸缩水甘油酯(CPGMA)微球,该聚合物微球表面含有大量环氧基团,为实现TEMPO的固载化提供了条件.以4-羟基-2,2,6,6-四甲基哌啶氮氧自由基(4-OH-TEMPO)为试剂,使CPGMA微球表面的环氧基团发生开环反应,从而将TEMPO键合于微球表面,制得了固载有TEMPO的聚合物微球TEMPO/CPGMA.将此非均相催化剂与Fe(NO3)3组成共催化体系,应用于分子氧氧化环己醇的催化氧化过程,深入考察了该共催化体系的催化性能,并探索研究了催化氧化机理,考察了主要条件对催化氧化反应的影响.结果表明,共催化体系TEMPO/CPGMA+Fe(NO3)3可以有效地催化分子氧氧化环己醇的氧化过程,将环己醇转化为唯一的产物环己酮,显示出良好的催化选择性.助催化剂Fe(NO3)3化学结构中的Fe^3+离子和NO3^�
1230-1236

SBA-16负载金属氧化物催化剂合成、表征及催化CO氧化反应活性

摘要:将V2O5,CeO2和CuO分散到提取自稻米壳的SBA-16上,考察了其催化CO氧化反应活性,并采用X射线衍射、扫描电镜、透射电镜、程序升温还原和紫外漫反射光谱对所制催化剂进行了表征.结果表明,掺杂CuO的介孔氧化硅是一种有前景的催化剂,其CO转化率可达98%以上.
1237-1241

水相体系中β-环糊精-丁磺酸催化合成氧杂蒽二酮衍生物

摘要:多组分反应是指三个或三个以上反应物在同一反应容器里形成一个新的、包括所有反应物主要部分的产物.多组分反应因具有操作简单、效率高和原子经济性好等优点而引起化学家和药物化学工作者的极大兴趣,成为有机合成发展趋势之一.9-芳基-2,3,4,5,6,7-六氢-2H-氧杂蒽-1,8-二酮衍生物是由芳香醛和1,3-环己二酮化合物的多组分缩合反应制备.通常在Lewis酸或Brnsted酸催化下进行反应,常用的催化剂有对十二烷基苯磺酸、Amberlyst-1、I2、MCM-41-SO3H、HCl O4-Si O2、离子液体(如[Et3NH][HSO4])、纳米TiO2和纤维素-磺酸等,微波和超声波等技术也用于该反应.这些方法虽取得一定进展,但仍然存在反应时间较长和产率较低等缺点.因此,开发与研究氧杂蒽二酮衍生物的绿色合成方法显得非常必要.β-环糊精是由7个葡萄糖经1,4-苷键连接而成的环状化合物,7个伯醇羟基位于空洞小的一端,14个仲醇排列在空洞大的一端,形成空洞外部和入口处富有亲水性而空洞内部呈疏水性的特性.由于这一独特性能,β-环糊精及其衍生物被作为相转移催化剂应用于有机合成反应,如氧化反应、还原反应、环加成反应及偶联反应.对β-环糊精进行功能化修饰是拓展β-环糊精在有机合成反应中应用的有效方法之一.本文采用丁磺酸基功能化修饰β-环糊精,得到β-环糊精-丁磺酸(β-CD-BSA),探讨了其作为酸性催化剂在芳香醛和1,3-环己二酮(或二甲酮)制备氧杂蒽二酮衍生物反应中的应用.首先,β-环糊精与丁磺酸内酯反应,生产磺丁基醚-β-环糊精,再经过酸性离子交换树脂,得到β-CD-BSA,采用红外光谱(FT-IR)和1H NMR表征催化剂.结果表明,磺酸丁基成功嫁接到β-环糊精上,经1H NMR图谱分析,β-CD-BSA的磺酸丁基平均取代度为7.以苯甲醛和二甲酮反应为模型反应,探讨了反应溶剂和催化剂用量等因素对反应性能�
1249-1255

Cr改性钒基催化剂对NH3低温选择性催化还原Nox的影响

摘要:火电厂和机动车辆等的NOx排放量与日俱增,NOx的治理已成为环境保护的重要组成部分.以NH3作为还原剂的选择性催化还原(SCR)技术是目前消除NOx最为高效的方法之一.该反应最为典型的催化剂是V2O5–WO3(MoO3)/TiO2,催化活性窗口为250–400℃.国外通常将SCR系统置于省煤器之后,此时烟气温度在300℃以上,催化剂能保持较高的活性,但易受到烟气中高浓度烟尘、SO2和碱金属等的影响,寿命相对较短.此外,高温工艺中副产物硫酸铵的堵塞也是一个不可忽视的问题.因此,将SCR脱硝装置设在脱硫除尘之后成为一种优选技术之一,但烟气温度会降至250℃以下,而常规的钒基催化剂不能满足低温活性要求.通过添加助剂或改变载体可改善钒基催化剂的低温活性,同时保持其高效的抗硫能力.本文以Cr和V为活性组分,TiO2为载体,采用浸渍法制备了铬钒钛(Cr–VOx/TiO2)系列催化剂,考察了它们的低温脱硝活性和抗水抗硫性,并通过N2吸附-脱附、X射线衍射、NH3程序升温脱附(NH3-TPD)、H2程序升温还原(H2-TPR)和X射线光电子能谱等手段对催化剂进行了表征,分析了Cr–V催化剂的作用机制.结果显示,当n(Cr):n(V)为0.2:0.8,活性组分负载量为10 wt%时,Cr–VOx/TiO2催化剂表现出最佳的低温催化活性;当反应温度为160℃时,NOx转化率达到90%以上,明显优于其他催化剂,同时活性窗口(160–300℃)得到拓宽.NH3-TPD结果表明,VOx/TiO2催化剂表面呈中弱酸性,随着Cr的添加,钒基催化剂的NH3脱附峰向高温拓宽,说明其表面强酸量有所增加,Cr0.2–V0.8/TiO2在160–300℃范围内均出现了NH3的脱附峰,此时催化剂表面弱酸量最大.当n(Cr):n(V)大于0.2:0.8时,催化剂表面出现强酸位,这种强酸位不利于NH3脱附,从而不利于SCR反应的进行.因此适量Cr的添加有助于提高钒基催化剂表面弱酸及中性酸量.H2-TPR结果发现,助�
1256-1262

Visible-light-induced photocatalytic performances of ZnO-CuO nanocomposites for degradation of 2,4-dichlorophenol

1263-1272

电氧化异丙肾上腺素的纳米复合电催化剂:用作传感器

摘要:在金纳米粒子(AuNPs)上经苯硫酚衍生物(3,4二羟基苯基-偶氮-苯硫酚,DAT)自组装制得了一种新型纳米复合物,用于修饰玻璃碳电极(GCE/AuNP-DAT).采用循环伏安法研究了该新型电极的性质,并将其用作异丙肾上腺素(IP)电催化剂,考察了该纳米复合物的电催化活性,从而得到反应机理和催化反应速率常数.由于GCE/AuNP-DAT电极对尿酸氧化没有电催化活性,因此可将IP的氧化信号从该改进电极中分离出来,从而排除了尿酸对IP测定的干扰.该电极可作为传感器,当用于差动脉冲伏安法测定IP时,线性动态范围为1.0–1500.0μmol/L,检测极限为0.46μmol/L.
1273-1279

Synthesis and application of magnetically recyclable nanocatalyst Fe3O4@Nico@Cu in the reduction of azo dyes

1280-1286

氧化钛负载脱硝催化剂的碱中毒过程:氧化钒的保留和氧化钨的牺牲

摘要:V2O5-WO3/TiO2催化剂目前已广泛用于电厂和工业锅炉燃烧废气脱硝,但燃烧原料煤及石油中含有的杂质元素碱金属与碱土金属元素可吸附在催化剂上,不仅会减少催化剂酸性位的数量,还会与催化活性元素结合生成惰性物种,导致催化剂失活.因此,已有许多有关钒钨钛催化剂碱中毒的研究,从催化剂的氧化还原能力、酸性位损失及表面孔结构等方面进行了讨论.但这些研究大多集中在碱中毒对活性组分V2O5的影响及中毒催化剂的活性变化,很少涉及催化剂中WO3的作用,也缺乏有关不同活性元素与钾盐反应的实验证据.本文采用过量浸渍法制备了不同钒和钨含量的钒钨钛催化剂,研究了氯化钾对其氨法选择性催化还原(NH3-SCR)活性的失活效应.利用感应耦合等离子体、N2吸附、拉曼光谱、H2程序升温还原、NH3吸附红外光谱和NH3氧化活性等手段对新鲜和中毒催化剂的性质进行了表征,特别探讨了V2O5和WO3对催化剂抗碱中毒能力的贡献.催化剂活性测试结果表明,V2O5含量越高,活性温度窗口越宽,而且含有WO3的三元催化剂活性高于V2O5/TiO2二元催化剂.催化剂的BET比表面积和孔结构取决于TiO2载体,随活性组分配比变化不大,说明催化剂物理结构性质并非影响活性的主要因素.原位红外光谱及H2程序升温还原测试结果表明,随V2O5含量提高,催化剂表面Bronsted酸性位数量及氧化还原能力提高.作为反应的主要活性物种,V2O5在碱中毒处理后变成惰性的偏钒酸钾KVO3,使催化剂中Bronsted酸性位减少,热稳定性下降,并削弱了催化剂的氧化还原能力,因此低钒含量的催化剂容易严重中毒失活.在高钒负载量(3%)时,部分V2O5在碱中毒后得以保留,从而使催化剂保持了一定的脱硝催化活性.另外,WO3能给催化剂表面提供热稳定的酸性位,虽然WO3自身的氧化还原能力差,但其能改善V2O5的分散性,从而提高V2O5-WO
1287-1294

P改性对HZSM-5酸性及P-HZSM-5/CuO-ZnO-Al2O3混合催化剂二甲醚水蒸气重整制氢的影响

摘要:近年来,氢能作为清洁可再生新型能源越来越受到人们关注.然而,氢气储存和运输困难,制约了其广泛利用.因此,寻找一种高效的原位在线制氢技术成为解决这一难题的重要方案之一.二甲醚作为氢的载体,具有高H/C比、高能量密度、无毒和无致癌性等优点,而且二甲醚的物理性质与液化石油气(LPG)相类似,燃烧时不会产生污染性气体,且工业上已实现大规模生产.通过重整技术,可以使二甲醚有效地转化为H2.目前的重整技术主要包括部分氧化重整、自热重整、干重整以及水蒸气重整(SR).其中二甲醚水蒸气重整(DMESR)技术具有很高的氢气产率,被认为是一种非常有前途的在线制氢技术.二甲醚水蒸气重整反应分两步进行,第一步是固体酸催化剂催化的二甲醚水解反应,第二步是金属催化剂催化的甲醇水蒸气重整反应.其中二甲醚水解反应是整个反应的控速步骤.γ-Al2O3作为一种最常用的固体酸催化剂,因其在二甲醚水蒸气重整反应中的良好活性和稳定性,以及很少的副反应等优点,得到了国内外研究者的普遍青睐.但是,γ-Al2O3催化二甲醚水解反应的温度较高(300–400℃),极易导致用于重整的铜基催化剂烧结和失活.与γ-Al2O3相比,H型分子筛催化剂(如HZSM-5)酸性较强,酸性位较多,催化二甲醚水解反应的温度要低得多(〈300℃).然而HZSM-5含有的强酸位在二甲醚水蒸气重整过程中极易导致催化剂因积碳而失活.因此,有必要对HZSM-5分子筛进行改性,去除不必要的强酸位,以降低积碳,提高催化剂的活性和稳定性.本文利用HZSM-5良好的离子交换能力,在不改变分子筛骨架结构的前提下,通过一种简单的浸渍法制备了一系列不同P含量的P改性HZSM-5催化剂,并分别将其与传统的CuO-ZnO-Al2O3催化剂机械混合用于二甲醚水蒸气重整制氢.详细研究了P改性对HZSM-5分子筛酸性以及P-HZSM-5/
1295-1303